Skip to main content
Log in

Universal gravitational equations

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We show that for a wide class of Lagrangians which depend only on the scalar curvature of a metric and a connection, the application of the first-order formalism,i.e. treating the metric and the connection as independent variables, leads to «universal» equations. If the dimensionn of space-time is greater than two, these universal equations are Einstein equations for a generic Lagrangian. There are exceptional cases where a bifurcation appears. In particular, bifurcations take place for conformally invariant LagrangiansL =R(sun/2)√g. For 2-dimensional space-time we obtain that the universal equation is the equation of constant scalar curvature; the connection in this case is a Weyl connection, containing the Levi-Civita connection of the metric and an additional vector field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl:Raum-Zeit-Materie, 4th edition (Springer, Berlin, 1923).

    Book  Google Scholar 

  2. R. Utiyama andB. DeWitt:J. Math. Phys.,3, 608 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Deser, Hung-Sheng Tsao andP. van Nieuvenhuizen:Phys. Rev. D,10, 3337 (1974).

    Article  ADS  Google Scholar 

  4. K. A. Stelle:Phys. Rev. D,16, 953 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Magnano, M. Ferraris andM. Francavilla:Class. Quantum Grav.,7, 557 (1990).

    Article  ADS  MATH  Google Scholar 

  6. E. Witten:Nucl. Phys. B,311, 46 (1988-89).

    Article  ADS  Google Scholar 

  7. G. Stephenson:Nuovo Cimento,9, 263 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. W. Higgs:Nuovo Cimento,11, 816 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  9. C. N. Yang:Phys. Rev. Lett,33, 445 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Ferraris: inAtti del VI Convegno Nazionale di Relatività Generale e Fisica della Gravitazione, Firenze, 1984, edited byM. Modugno (Tecnoprint, Bologna, 1986), pp. 127–136.

    Google Scholar 

  11. B. Shahid-Saless:J. Math. Phys.,32, 694 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  12. F. W. Hehl, P. Von der Heyde, G. D. Kerlick andJ. Nester:Rev. Mod. Phys.,48, 393 (1976).

    Article  ADS  Google Scholar 

  13. E. Sezgin andP. van Nieuvenhuizen:Phys. Rev. D,21, 3269 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  14. M. O. Katanaev andI. V. Volovich:Ann. Phys. (N.Y.),197, 1 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Rosenbaum andM. Ryan:Phys. Rev. D,37, 2920 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  16. V. H. Hamity andD. E. Barraco:Gen. Rel. Grav.,25, 461 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraris, M., Francaviglia, M. & Volovich, I. Universal gravitational equations. Nuov Cim B 108, 1313–1317 (1993). https://doi.org/10.1007/BF02741283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741283

PACS

Navigation