Skip to main content
Log in

Pituitary sex steroid receptors: Localization and function

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The pituitary contains estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR). In accordance with immunocytochemistry, it is agreed that sex hormone receptors reside into the nucleus. All three receptors are found predominantly in gonadotrophs and lactotrophs, and less frequently in other cell types. ER plays a major role in prolactin (PRL) production and lactotroph proliferation, and protracted estrogen administration induces lactotroph hyperplasia and adenoma in rodents. Most research on PR and AR is focused on their role in the fine-tuning of gonadotropin secretion during estrous cycle. Contrary to the effect in nontumorous pituitary, estrogens can inhibit the proliferation of transplantable rat pituitary tumors and of cell lines derived from them. In humans, despite the presence of ER in all types of adenohypophysial tumors, the role of estrogen in tumor cell proliferation is still unclear. Few results indicate that tumor growth is stimulated by estrogen, and inhibited by progesterone and androgen. Novel data reveal that steroid hormones can act directly on plasma membrane or via other receptors, and interact with growth factors, oncogenes, and other transcription factors. The mechanisms by which steroid hormones control cell proliferation remain a major challenge for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brann DW, Hendry LB, Mahesh VB. Emerging diversities in the mechanism of action of steroid hormones [Review]. J Steroid Biochem Mol Biol 52:113–133, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Parker MG. Steroid and related receptors [Review]. Curr Opinion Cell Biol 5:499–504, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Evans RM. The steroid and thyroid hormone receptor superfamily [Review]. Science 240:889–895, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members [Review]. Annu Rev Biochem 63:451–486, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Carson-Jurica MA, Schrader WT, O’Malley BW. Steroid receptor family: structure and functions. Endocr Rev 11:201–220, 1990.

    PubMed  CAS  Google Scholar 

  6. Orti E, Bodwell JE, Munck A. Phosphorylation of steroid hormone receptors. Endocr Rev 13:105–128, 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Truss M, Beato M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev 14:459–479, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Chang C, Kokontis J, Swift S, Liao ST. Molecular cloning and structural analysis of complementary DNA of human and rat androgen receptors. Prog Clin Biol Res 322:53–63, 1990.

    PubMed  CAS  Google Scholar 

  9. Green S, Walter P, Greene G, Knust A, Goffin C, Jensen E, Scrace G, Waterfield M, Chambon P. Cloning of the human oestrogen receptor cDNA. J Steroid Biochem 24:77–83, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Koike S, Sakai M, Muramatsu M. Molecular cloning and characterization of rat estrogen receptor cDNA. Nucleic Acids Res 15:2499–2513, 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Misrahi M, Atger M, d’Auriol L, Loosfelt H, Meriel C, Fridlansky F, Guiochon-Mantel A, Galibert F, Milgrom E. Complete amino acid sequence of the human progesterone receptor deduced from cloned cDNA. Biochem Biophys Res Commun 143:740–748, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. White R, Lees JA, Needham M, Ham J, Parker M. Structural organization and expression of the mouse estrogen receptor. Mol Endocrinol 1:735–744, 1987.

    PubMed  CAS  Google Scholar 

  13. Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM. Cloning of human androgen receptor complementary DNA and localization on X chromosome. Science 240:327–330, 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Furth J, Clifton KH. Experimental pituitary tumors. In: Haris G, Donovan B, eds. The pituitary gland, vol. 2. London: Butterworths, 1966; 460–497.

    Google Scholar 

  15. Russfield AB. Tumors of the endocrine glands and secondary sex organs. Washington DC: US Government Printing Office (Public Health Service Publication No 1332), 1966.

    Google Scholar 

  16. Stumpf WE, Sar M. Steroid hormone target sites in the brain: the differential distribution of estrogen, progestin, androgen and glucocorticosteroid. J Steroid Biochem 7:1163–1170, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Keefer DA, Stumpf WE, Petrusz P. Quantitative autoradiographic assessment of3H-estradiol uptake in immunocytochemically characterized pituitary cells. Cell Tissue Res 166:25–35, 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Herbert DC, Sheridan PJ. Uptake and retention of sex steroids by the baboon pituitary gland—evidence of sexual dimorphism with respect to dihydrotestosterone. Biol Reprod 28:377–383, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Sar M, Parikh I. Immunohistochemical localization of estrogen receptor in rat brain, pituitary and uterus with monoclonal antibodies. J Steroid Biochem 24:497–503, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Vidal S, Stefaneanu L, Kovacs K, Bartke A. Gene expression of estrogen and dopamine subtype 2 receptors in transgenic mice with overexpression of heterologous growth hormones. Program of the 10th International Congress of Endocrinology, San Francisco, CA, vol. 2, abstract P3-217, p. 809, 1996.

  21. Sprangers SA, Brenner RM, Bethea CL. Estrogen and progestin receptor immununocytochemistry in lactotropes versus gonadotropes of monkey pituitary cell cultures. Endocrinology 124:1462–1470, 1989.

    PubMed  CAS  Google Scholar 

  22. Friend KE, Chiou YK, Lopes MB, Laws ER Jr, Hughes KM, Shupnik MA. Estrogen receptor expression in human pituitary: correlation with immunohistochemistry in normal tissue, and immunohistochemistry and morphology in macroadenomas. J Clin Endocrinol Metab 78:1497–1504, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Ikeda H, Fujiware K, Kayama T, Yoshimoto T. Immunohistochemical demonstration of estrogen receptor in human adenohypophysial cells and pituitary adenomas. Acta Histochem Cytochem 27:331–338, 1994.

    CAS  Google Scholar 

  24. Pelletier G, Liao N, Follea N, Govindan MV. Distribution of estrogen receptors in the rat pituitary as studied by in situ hybridization. Mol Cell Endocrinol 56:29–33, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Stefaneanu L, Kovacs K, Horvath E, Lloyd RV, Buchfelder M, Fahlbusch R, Smyth H. In situ hybridization study of estrogen receptor messenger ribonucleic acid in human adenohypophysial cells and pituitary adenomas. J Clin Endocrinol Metab 78:83–88, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Friend KE, Ang LW, Shupnik MA. Estrogen regulates the expression of several different estrogen receptor mRNA isoforms in rat pituitary. Proc Natl Acad Sci USA 92:4367–4371, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Geffroy-Roisne S, Duval J, Thieulant M-L. Multiple forms of affinity-labeled estrogen receptors in rat distinct pituitary cells. Endocrinology 131:1503–1510, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Gotteland M, Desauty G, Delarue JC, Liu L, May E. Human estrogen receptor messenger RNA variants in both normal and tumor breast tissues. Mol Cell Endocrinol 112:1–13, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Schrader WT, O’Malley BW. Progesterone-binding components of chick oviduct. IV. Characterization of purified subunits. J Biol Chem 247:51–59, 1972.

    PubMed  CAS  Google Scholar 

  30. Conneely OM, Maxwell BL, Toft DO, Schrader WT, O’Malley BW. The A and B forms of the chicken progesterone receptor arise by alternate initiation of translation of a unique mRNA. Biochem Biophys Res Commun 124:493–501, 1987.

    Article  Google Scholar 

  31. Kastner P, Krust B, Turcotte U, Strupp U, Tora L, Gronemeyer H, Chambon P. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 9:1603–1614, 1990.

    PubMed  CAS  Google Scholar 

  32. Clark CR, MacLusky NJ, Naftolin F. Oestrogen induction of progestin receptors in the rat brain and pituitary gland: quantitative and kinetic aspects. J Endocr 93:339–353, 1982.

    PubMed  CAS  Google Scholar 

  33. Gasc JM, Beaulieu EE. Regulation by estradiol of the progesterone receptor in the hypothalamus and pituitary: an immunohistochemical study in the chicken. Endocrinology 122:1357–1365, 1988.

    PubMed  CAS  Google Scholar 

  34. Fox SR, Harlan RE, Shivers BD, Pfaff DW. Chemical characterization of neuroendocrine targets for progesterone in the female rat brain and pituitary. Neuroendocrinology 51:276–283, 1990.

    PubMed  CAS  Google Scholar 

  35. Herbert DC, Sheridan PJ. Identification of the progesterone target cells in the female baboon pituitary gland. Biol Reprod 30:479–483, 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Leavitt WW, Kimmel GL, Friend JP. Steroid hormone uptake by anterior pituitary cell suspensions. Endocrinology 92:94–103, 1973.

    PubMed  CAS  Google Scholar 

  37. Tuohimaa P, Niemi M. Uptake of sex steroids by the hypothalamus and anterior pituitary of pre- and neonatal rats. Acta Endocrinol (Copenh) 71:37–44, 1972.

    CAS  Google Scholar 

  38. Handa RJ, Reid DL, Resko JA. Androgen receptors in brain and pituitary of female rats: cyclic changes and comparisons with the male. Biol Reprod 34:293–303, 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Herbert DC, Sheridan PJ. Uptake and retention of sex steroids by the baboon pituitary gland—evidence of sexual dimorphism with respect to dihydrotestosterone. Biol Reprod 28:377–383, 1983.

    Article  PubMed  CAS  Google Scholar 

  40. Herbert DC, Weaker FJ, Sheridan PJ. Localization of3H-dihydrotestosterone in the pituitary gland of the rhesus monkey. Cell Tissue Res 215:499–504, 1981.

    Article  PubMed  CAS  Google Scholar 

  41. Sar M, Stumpf WE. Simultaneous localization of steroid and peptide hormones in rat pituitary by combined thaw-mount autoradiography and immunohistochemistry: localization of dihydrotestosterone in gonadotropes, thyrotropes and pituicytes. Cell Tissue Res 203:1–7, 1979.

    Article  PubMed  CAS  Google Scholar 

  42. Sheridan PJ, Herbert DC. Nuclear uptake and retention of androgen by the pituitary gland of the hamster and the rat. Cell Tissue Res 206:35–40, 1980.

    Article  PubMed  CAS  Google Scholar 

  43. Kimura N, Mizokami A, Oonuma T, Sasano H, Nagura H. Immunocytochemical localization of androgen receptor with polyclonal antibody in paraffin-embedded human tissues [see comments]. J Histochem Cytochem 41:671–678, 1993.

    PubMed  CAS  Google Scholar 

  44. Burgess LH, Handa RJ. Hormonal regulation of androgen receptor mRNA in the brain and anterior pituitary gland of the male rat. Brain Res Mol Brain Res 19:31–38, 1993.

    Article  PubMed  CAS  Google Scholar 

  45. Weisenberg LS, Piroli G, Heller CL, DeNicola AF. Binding of steroids in nuclear extracts and cytosol of rat pituitary and estrogen-induced pituitary tumors. J Steroid Biochem 28:683–689, 1987.

    Article  PubMed  CAS  Google Scholar 

  46. Piroli G, Weisenberg LS, Grillo C, De Nicola AF. Subcellular distribution of cyclic adenosine 3′,5′-monophosphate-binding protein and estrogen receptors in control pituitaries and estrogen-induced pituitary tumors. J Natl Cancer Inst 82:596–601, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. McLeod RM, Smith C, DeWitt GW. Hormonal properties of transplanted pituitary tumors and their relation to the pituitary gland. Endocrinology 75:670–691, 1964.

    Google Scholar 

  48. Hollander N, Hollander VP. Development of a somatotropic variant of the mammosomatotropic tumor MtT/W5. Proc Soc Exp Biol Med 137:1157–1162, 1971.

    PubMed  CAS  Google Scholar 

  49. Yokoro K, Furth J, Haran-Ghera N. Induction of mammotropic pituitary tumor by X-rays in rats and mice: the role of mammotropes in development of mammary tumors. Cancer Res 21:178–191, 1961.

    PubMed  CAS  Google Scholar 

  50. Tashjian AH, Yadumura Y, Levine L, Sato GH, Parker ML. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:348–352, 1968.

    Google Scholar 

  51. McGuire WL, DeLaGarza M, Chamnes GC. Estrogen receptor in a prolactin-secreting pituitary tumor (MtTW5). Endocrinology 93:810–813, 1973.

    PubMed  CAS  Google Scholar 

  52. Attramadal A, Naess O, Haug E, Hasson V, Purvis K. Androgen receptors in prolactin producing pituitary tumors in rats. Acta Endocrinol (Copenh) 86:288–298, 1977.

    CAS  Google Scholar 

  53. Pichon MF, Bression D, Peillon F, Milgrom E. Estrogen receptors in human pituitary adenomas. J Clin Endocrinol Metab 51:897–902, 1980.

    PubMed  CAS  Google Scholar 

  54. Ironside JW, Dagerfeld VLM, Timperley WR, Underwood JCE. Steroid hormone receptors in pituitary adenomas: a biochemical, immunocytochemical and morphometric study on cryostat sections. Neuropathol Appl Neurobiol 12:537–546, 1986.

    Google Scholar 

  55. Nakao H, Koga M, Arao M, Nakao M, Sato B, Kishimoto S, Saitoh Y, Arita N, Mori S. Enzyme-immunoassay for estrogen receptors in human pituitary adenomas. Acta Endocrinol (Copenh) 120:233–238, 1989.

    CAS  Google Scholar 

  56. Caronti B, Palladini G, Calderaro C, Bevilacqua MG, Petrangeli E, Esposito V, Tamburrano G, Gulino A, Jaffrain-Rea ML. Effects of gonadal steroids on the growth of human pituitary adenomas in vitro. Tumour Biol 16:353–364, 1995.

    PubMed  CAS  Google Scholar 

  57. Maurer RA, Kim KE, Day RN, Notides AC. Regulation of prolactin gene expression by estradiol [Review]. Prog Clin Biol Res 322:159–169, 1990.

    PubMed  CAS  Google Scholar 

  58. Maurer RA, Notides AC. Identification of an estrogen-responsive element from the 5′-flanking region of the rat prolactin gene. Mol Cell Biol 7:4247–4254, 1987.

    PubMed  CAS  Google Scholar 

  59. Waterman ML, Adler S, Nelson C, Green GL, Evans RM, Rosenfeld MG. A single domain of the estrogen receptor confers deoxyribonucleic acid binding and transcriptional activation of the rat prolactin gene. Mol Endocrinol 2:14–21, 1988.

    PubMed  CAS  Google Scholar 

  60. Nowakowski BE, Maurer RA. Multiple Pit-1-binding sites facilitate estrogen responsiveness of the prolactingene. Mol Endocrinol 8:1742–1749, 1994.

    Article  PubMed  CAS  Google Scholar 

  61. Labrie F, Drouin J, Ferland L, Lagace L, Beaulieu M, De Lean A, Kelly PA, Caron MG, Raymond V. Mechanism of action of hypothalamic hormones in the anterior pituitary gland and specific modulation of their activity by sex steroids and thyroid hormones [Review]. Recent Prog Horm Res 34:25–93, 1978.

    PubMed  CAS  Google Scholar 

  62. Pasqualini C, Bojda F, Kerdelhue B. Direct effect of estradiol on the number of dopamine receptors in the anterior pituitary of ovariectomized rats. Endocrinology 119: 2484–2489, 1986.

    PubMed  CAS  Google Scholar 

  63. Kukstas LA, Domec C, Bascles L, Bonnet J, Verrier D, Israel J-M, Vincent J-D. Different expression of the two dopaminergic D2 receptors, D2415 and D2444, in two types of lactotroph each characterized by their response to dopamine, and modification of expression by sex steroids. Endocrinology 129:1101–1103, 1991.

    PubMed  CAS  Google Scholar 

  64. Power RF, Mani SK, Codina J, Conneely OM, O’Malley BW. Dopaminergic and ligandindependent activation of steroid hormone receptors. Science 254:1636–1639, 1991.

    Article  PubMed  CAS  Google Scholar 

  65. Woolley DE, Hope WG, Thompson-Reece MA, Takahashi K. Dopaminergic stimulation of estrogen receptor binding in vivo: a reexamination. Recent Prog Horm Res 49:383–392, 1994.

    PubMed  CAS  Google Scholar 

  66. Kimura N, Hayafuji C, Konagaya H, Takahashi K. 17 beta-estradiol induces somatostatin (SRIF) inhibition of prolactin release and regulates SRIF receptors in rat anterior pituitary cells. Endocrinology 119:1028–1036, 1986.

    PubMed  CAS  Google Scholar 

  67. Gershengorn MC, Marcus-Samuels BE, Geras E. Estrogens increase the number of thyrotropin-releasing hormone receptors on mammotropic cells in culture. Endocrinology 105:171–176, 1979.

    PubMed  CAS  Google Scholar 

  68. DeLean A, Garon M, Kelly PA, Labrie F. Changes of pituitary thyrotropin releasing hormone (TRH) receptor level and prolactin response to TRH during the rat estrous cycle. Endocrinology 100:1505–1510, 1977.

    CAS  Google Scholar 

  69. Kimura N, Arai K, Sahara Y, Suzuki H, Kimura N. Estradiol transcriptionally and posttranscriptionally up-regulates thyrotropin-releasing hormone receptor messenger ribonucleic acid in rat pituitary cells. Endocrinology 134:432–440, 1994.

    Article  PubMed  CAS  Google Scholar 

  70. Szijan I, Parma DL, Engel NI. Expression of c-myc and c-fos protooncogenes in the anterior pituitary gland of the rat. Effect of estrogen. Horm Metab Res 24:154–157, 1992.

    PubMed  CAS  Google Scholar 

  71. Schuchard M, Landers JP, Sandhu NP, Spelsberg TC. Steroid hormone regulation of nuclear proto-oncogenes. Endocr Rev 14: 659–669, 1993.

    Article  PubMed  CAS  Google Scholar 

  72. Sarkar DK, Kim KH, Minami S. Transforming growth factor-beta 1 messenger RNA and protein expression in the pituitary gland: its action on prolactin secretion and lactotropic growth. Mol Endocrinol 6:1825–1833, 1992.

    Article  PubMed  CAS  Google Scholar 

  73. Qian X, Jin L, Lloyd RV. Expression and regulation of transforming growth factor β1 in cultured normal and neoplastic rat pituitary cells. Endocr Pathol 7:77–90, 1996.

    PubMed  CAS  Google Scholar 

  74. Vrontakis ME, Yamamoto T, Schroedter IC, Nagy JI, Friesen HG. Estrogen induction of galanin synthesis in the rat anterior pituitary gland demonstrated by in situ hybridization and immunohistochemistry. Neurosci Lett 100:59–64, 1989.

    Article  PubMed  CAS  Google Scholar 

  75. Stefaneanu L, Powell-Braxton L, Tampanaru A, Kovacs K. Changes in pituitary growth hormone and prolactin gene expression of mice with inactive IGF-I gene. Program of the 77th Annual Meeting of The Endocrine Society, Washington, DC, abstract no. P2-309, p. 368, 1995.

  76. Michels KM, Lee W-H, Seltzer A, Saavedra JM, Bondy CA. Up-regulation of pituitary [125I]insulin-like growth factor-I (IGF-I) binding and IGF binding protein-2 and IGF-I gene expression by estrogen. Endocrinology 132:23–29, 1993.

    Article  PubMed  CAS  Google Scholar 

  77. Simard J, Hubert JF, Hosseinzadeh T, Labrie F. Stimulation of growth hormone release and synthesis by estrogens in rat anterior pituitary cells in culture. Endocrinology 119: 2004–2011, 1986.

    PubMed  CAS  Google Scholar 

  78. Shulman DI, Sweetland M, Duckett G,Root AW. Effect of estrogen on the growth hormone (GH) secretory response to GH-releasing factor in the castrate adult female rat in vivo. Endocrinology 120:1047–1051, 1987.

    PubMed  CAS  Google Scholar 

  79. Lloyd RV. Analysis of mammosomatotropic cells in normal and neoplastic human pituitaries. Pathol Res Pract 183:577–579, 1988.

    PubMed  CAS  Google Scholar 

  80. Frawley LS, Boockfor FR. Mammosomatotropes: presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 12:337–355, 1991.

    PubMed  CAS  Google Scholar 

  81. Boockfor FR, Hoeffler JP, Frawley LS, Estradiol induces a shift in cultured cells that release prolactin or growth hormone. Am J Physiol 250:E103-E105, 1986.

    PubMed  CAS  Google Scholar 

  82. Stefaneanu L, Kovacs K, Lloyd RV, Scheithauer BW, Young WF Jr, Sano T, Jin L. Pituitary lactotrophs and somatotrophs in pregnancy: a correlative in situ hybridization and immunocytochemical study. Virchows Arch B 62:291–296, 1992.

    Article  PubMed  CAS  Google Scholar 

  83. Zmeili SM, Papavasiliou SS, Thorner MO, Evans WS, Marshall JC, Landefeld TD. Alpha and luteinizing hormone beta subunit messenger ribonucleic acids during the rat estrous cycle. Endocrinology 119:1867–1869, 1986.

    PubMed  CAS  Google Scholar 

  84. Shupnik MA, Gharib SD, Chin WW. Divergent effects of estradiol on gonadotropin gene transcription in pituitary fragments. Mol Endocrinol 3:474–480, 1989.

    Article  PubMed  CAS  Google Scholar 

  85. Shupnik MA, Weinmann CM, Notides AC, Chin WW. An upstream region of the rat luteinizing hormone beta gene binds estrogen receptor and confers estrogen responsiveness. J Biol Chem 264:80–86, 1989.

    PubMed  CAS  Google Scholar 

  86. Miller WL, Knight MM, Grimek HJ, Gorski J. Estrogen regulation of follicle stimulating hormone in cell culture of sheep pituitaries. Endocrinology 100:1306–1316, 1977.

    PubMed  CAS  Google Scholar 

  87. Miller WL, Wu J. Estrogen regulation of follicle-stimulating hormone production in vitro: species variation. Endocrinology 108:672–679, 1981.

    Google Scholar 

  88. Miller WL, Alexander DC, Wu JC, Huang ES, Whitfield GK, Hall SH. Regulation of β-chain mRNA of ovine follicle-stimulating hormone by 17β-estradiol. Mol Cell Biochem 53/54:187–195, 1983.

    Article  Google Scholar 

  89. Miller CD, Miller WL. Transcriptional repression of the ovine follicle-stimulating hormone-β gene by 17β-estradiol. Endocrinology 137:3437–3446, 1996.

    Article  PubMed  CAS  Google Scholar 

  90. Handa RJ, Rodrigues EW. Characterization of estrogen’s influence on anterior pituitary androgen receptor: effect of bromocriptine treatment. Neuroendocrinology 53:12–19, 1991.

    PubMed  CAS  Google Scholar 

  91. Faglia G, Beck-Peccoz P, Ferrari C, Ambrosi B, Spada A, Travaglini P. Enhanced plasma thyrotrophin response to thyrotrophin-releasing hormone following oestradiol administration in man. Clin Endocrinol (Oxford) 2:207–210, 1973.

    CAS  Google Scholar 

  92. Ahlquist JA, Franklyn JA, Wood DF, Balfour NJ, Docherty K, Sheppard MC, Ramsden DB. Hormonal regulation of thyrotrophin synthesis and secretion. Horm Metab Res Supp 17:86–89, 1987.

    CAS  Google Scholar 

  93. Spitz IM, Zylber-Horan EA, Trestian S. The thyrotropin (TSH) profile in isolated gonadotropin deficiency: a model to evaluate the effect of sex steroids on TSH secretion. J Clin Endocrinol Metab 57:415–420, 1983.

    PubMed  CAS  Google Scholar 

  94. Glass CK, Holloway JM. Regulation of gene expression by the thyroid hormone receptor [Review]. Biochim Biophys Acta 1032:157–176, 1990.

    PubMed  CAS  Google Scholar 

  95. Burgess LH, Handa RJ. Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology 131:1261–1269, 1992.

    Article  PubMed  CAS  Google Scholar 

  96. Williams RF, Gianfortoni JG, Hodgen GD. Hyperprolactinemia induced by an estrogen-progesterone synergy: quantitative and temporal effects of estrogen priming in monkeys. J Clin Endocrinol Metab 60:126–132, 1985.

    PubMed  CAS  Google Scholar 

  97. Bethea CL. Stimulatory effect of estrogen on prolactin secretion from primate pituitary cells cultured on extracellular matrix and in serum-free medium. Endocrinology 115: 443–451, 1984.

    PubMed  CAS  Google Scholar 

  98. Brann DW, Rao IM, Mahesh VB. Antagonism of estrogen-induced prolactin release by progesterone. Biol Reprod 39:1067–1073, 1988.

    Article  PubMed  CAS  Google Scholar 

  99. Tong Y, Simard J, Labrie C, Zhao HF, Labrie F, Pelletier G. Inhibitory effect of androgen on estrogen-induced prolactin messenger ribonucleic acid accumulation in the male rat anterior pituitary gland. Endocrinology 125:1821–1828, 1989.

    PubMed  CAS  Google Scholar 

  100. Cho BN, Suh YH, Yoon YD, Lee CC, Kim K. Progesterone inhibits the estrogen-induced prolactin gene expression in the rat pituitary. Mol Cell Endocrinol 93:47–52, 1993.

    Article  PubMed  CAS  Google Scholar 

  101. McGinnis MY, Krey LC, MacLusky NJ, McEwen BS. Steroid receptor levels in intact and ovariectomized estrogen-treated rats: an examination of quantitative, temporal and endocrine factors influencing the efficacy of an estradiol stimulus. Neuroendocrinology 33:158–165, 1981.

    PubMed  CAS  Google Scholar 

  102. Calderon J-J, Muldoon TG, Mahesh VB. Receptor-mediated interrelationships between progesterone and estradiol action on the anterior pituitary-hypothalamic axis of the ovariectomized immature rat. Endocrinology 120:2428–2435, 1987.

    Article  PubMed  CAS  Google Scholar 

  103. Brann DW, O’Conner JL, Wade MF, Zamorano PL, Mahesh VB. Regulation of anterior pituitary gonadotropin subunit mRNA levels during the preovulatory gonadotropin surge: a physiological role of progesterone in regulating LH-beta and FSH-beta mRNA levels. J Steroid Biochem Mol Biol 46:427–437, 1993.

    Article  PubMed  CAS  Google Scholar 

  104. Lesoon LA, Mahesh VB. Stimulatory and inhibitory effects of progesterone on FSH secretion by the anterior pituitary. J Steroid Biochem Mol Biol 42:479–491, 1992.

    Article  PubMed  CAS  Google Scholar 

  105. Mahesh VB, Brann DW. Interaction between ovarian and adrenal steroids in the regulation of gonadotropin secretion [Review]. J Steroid Biochem Mol Biol 41: 495–513, 1992.

    Article  PubMed  CAS  Google Scholar 

  106. Mahesh VB, Brann DW, Hendry LB. Diverse modes of action of progesterone and its metabolites [Review]. J Steroid Biochem Mol Biol 56:209–219, 1996.

    Article  PubMed  CAS  Google Scholar 

  107. Ho KY, Thorner MO, Krieg RJ Jr, Lau SK, Sinha YN, Johnson ML, Leong DA, Evans WS. Effects of gonadal steroids on somatotroph function in the rat: analysis by the reverse hemolytic plaque assay. Endocrinology 123:1405–1411, 1988.

    PubMed  CAS  Google Scholar 

  108. Brann DW, Putman CD, Mahesh VB. Antagonism of estrogen-induced prolactin release by dihydrotestosterone. Biol Reprod 40:1201–1207, 1989.

    Article  PubMed  CAS  Google Scholar 

  109. Damassa DA, Rabii J, Sawyer CH. Responses of serum LH and FSH to the removal of steroid feedback inhibition. Neuroendocrinology 37:122–130, 1983.

    PubMed  CAS  Google Scholar 

  110. Clay CM, Keri RA, Finicle AB, Heckert LL, Hamernik DL, Marschke KM, Wilson EM, French FS, Nilson JH. Transcriptional repression of the glycoprotein hormone alpha subunit gene by androgen may involve direct binding of androgen receptor to the proximal promoter. J Biol Chem 268:13,556–13,564, 1993.

    CAS  Google Scholar 

  111. Handa RJ, Stadelman HL, Resko JA. Effect of estrogen on androgen receptor dynamics in the female rat pituitary. Endocrinology 121:84–89, 1987.

    PubMed  CAS  Google Scholar 

  112. Tang LK, Spies HG. Effects of gonadal steroids on the basal and LRF-induced gonadotropin secretion by cultures of rat pituitary. Endocrinology 96:349–355, 1975.

    PubMed  CAS  Google Scholar 

  113. Shupnik MA. Effects of gonadotropin-releasing hormone on rat gonadotropin gene transcription in vitro: requirement for pulsatile administration for luteinizing hormone-beta gene stimulation. Mol Endocrinol 4:1444–1450, 1990.

    PubMed  CAS  Google Scholar 

  114. Coyne MD, Kitay JI. Effect of orchiectomy on pituitary secretion of ACTH. Endocrinology 89:1024–1028, 1971.

    PubMed  CAS  Google Scholar 

  115. Miskowiak B, Lesniewska B, Nowak M, Malendowicz LK. Studies on hypothalamo-pituitary corticoliberin system. V. The effects of gonadectomy and sex hormones on plasma ACTH and on the reactivity of the anterior pituitary gland to CRF. Exp Clin Endocrinol 92:1–6, 1988.

    PubMed  CAS  Google Scholar 

  116. Handa RJ, Nunley KM, Lorens SA, Louie JP, McGivern RF, Bollnow MR. Androgen regulation of adrenocorticotropin and corticosterone secretion in the male rat following novelty and foot shock stressors. Physiol Behav 55:117–124, 1994.

    Article  PubMed  CAS  Google Scholar 

  117. Ahlquist JA, Franklyn JA, Ramsden DB, Sheppard MC. The influence of dexamethasone on serum thyrotrophin and thyrotrophin synthesis in the rat. Mol Cell Endocrinol 64:55–61, 1989.

    Article  PubMed  CAS  Google Scholar 

  118. Lloyd HM, Meares JD, Jacobi J. Effects of oestrogen and bromocryptine on in vivo secretion and mitosis in prolactin cells. Nature 255:497,498, 1975.

    Article  PubMed  CAS  Google Scholar 

  119. Lloyd RV, Landefeld TD, Maslar I, Frohman LA. Diethylstilbestrol inhibits tumor growth and prolactin production in rat pituitary. Am J Pathol 118:379–386, 1985.

    PubMed  CAS  Google Scholar 

  120. Morel Y, Albaladejo V, Bouvier J, Andre J. Inhibition by 17 beta-estradiol of the growth of the rat pituitary transplantable tumor MtF4. Cancer Res 42:1492–1497, 1982.

    PubMed  CAS  Google Scholar 

  121. Pharaboz MO, Morel Y, Andre J. Dual effects of estradiol on normal and tumor pituitary cell multiplication. J Steroid Biochem 20:421–424, 1984.

    Article  PubMed  CAS  Google Scholar 

  122. Jin L, Song JY, Lloyd RV. Estrogen stimulates both prolactin and growth hormone mRNAs expression in the MtT/F4 transplantable pituitary tumor. Proc Soc Exp Biol Med 192:225–229, 1989.

    PubMed  CAS  Google Scholar 

  123. Trouillas J, Morel Y, Pharaboz MO, Cordier G, Girod C, Andre J. Morphofunctional modifications associated with the inhibition by estradiol of MtTF4 rat pituitary tumor growth. Cancer Res 44:4046–4052, 1984.

    PubMed  CAS  Google Scholar 

  124. Joly-Pharaboz MO, Fei ZL, Bouillard B, Andre J. Estradiol stimulation and inhibition of cell growth in new estrogen-sensitive cell lines and tumors established from the MtTF4 tumor. Cancer Res 50:3786–3794, 1990.

    PubMed  CAS  Google Scholar 

  125. Song JY, Jin L, Lloyd RV. Effects of estradiol on prolactin and growth hormone messenger RNAs in cultured normal and neoplastic (MtT/W15 and GH3) rat pituitary cells. Cancer Res 49:1247–1253, 1989.

    PubMed  CAS  Google Scholar 

  126. Boockfor FR, Schwarz LK. Cultures of GH3 cells contain both single and dual hormone secretors. Endocrinology 122:762–764, 1988.

    PubMed  CAS  Google Scholar 

  127. Thiny MT, Antczak C, Fields K, Jin L, Lloyd RV. Effects of estrogen and dexamethasone on a transgenic pituitary cell line. Regulation of hormone and chromogranin/secretogranin expression. Lab Invest 70:899–906, 1994.

    PubMed  CAS  Google Scholar 

  128. Pastorcic M, De A, Boyadjieva N, Vale W, Sarkar DK. Reduction in the expression and action of transforming growth factor beta 1 on lactotropes during estrogen-induced tumorigenesis in the anterior pituitary. Cancer Res 55:4892–4898, 1995.

    PubMed  CAS  Google Scholar 

  129. Newton CJ, Buric R, Trapp T, Brockmeier S, Pagotto U, Stalla GK. The unliganded estrogen receptor (ER) transduces growth factor signals. J Steroid Biochem Mol Biol 48:481–486, 1994.

    Article  PubMed  CAS  Google Scholar 

  130. Haug E, Gautik KM. Effects of sex steroids on prolactin secreting rat pituitary cells in culture. Endocrinology 99:1482–1489, 1976.

    PubMed  CAS  Google Scholar 

  131. Haug E, Aakvaag A, Sunde A, Gautvik KM, Eik-Nes KB. Androgen metabolism and mechanism of action in prolactin secreting rat pituitary cells in culture. J Steroid Biochem 16:51–59, 1982.

    Article  PubMed  CAS  Google Scholar 

  132. Scheithauer BW, Kovacs KT, Randall RN, Ryan N. Effects of estrogen on the human pituitary: a clinicopathologic study. Mayo Clin Proc 64:1077–1084, 1989.

    PubMed  CAS  Google Scholar 

  133. Scheithauer BW, Sano T, Kovacs K, Young WF Jr, Ryan N, Randall RV. The pituitary gland in pregnancy: a clinicopathologic and immunocytochemical study of 69 cases. Mayo Clin Proc 65:461–474, 1990.

    PubMed  CAS  Google Scholar 

  134. Kovacs K, Stefaneanu L, Ezzat S, Smyth HS. Prolactin-producing pituitary adenoma in a male-to-female transsexual patient with protracted estrogen administration. A morphologic study. Arch Pathol Lab Med 118: 562–565, 1994.

    PubMed  CAS  Google Scholar 

  135. Prysor-Jones RA, Silverlight JJ, Jenkins JS. Oestradiol, vasoactive intestinal peptide and fibroblast groth factor in the growth of human pituitary cells in vitro. J Endocrinol (Oxford) 120:171–177, 1989.

    CAS  Google Scholar 

  136. Sanno N, Teramoto A, Matsuno A, Takekoshi S. Expression of Pit-1 and estrogen receptor messenger RNA in prolactin-producing pituitary adenomas. Mod Pathol 9:526–533, 1996.

    PubMed  CAS  Google Scholar 

  137. Arafah BM, Wilhite BL, Rainieri J, Brodkey JS, Pearson OH. Inhibition action of bromocriptine and tamoxifen on the growth of human pituitary tumors in soft agar. J Clin Endocrinol Metab 57:986–992, 1983.

    PubMed  CAS  Google Scholar 

  138. Caronti B, Palladini G, Bevilacqua MG, Petrangeli E, Faioli B, Cantore G, Tamburrano G, Carapella CM, Jaffrain-Rea ML. Effects of 17 beta-estradiol, progesterone and tamoxifen on in vitro proliferation of human pituitary adenomas: correlation with specific cellular receptors. Tumour Biol 14:59–68, 1993.

    PubMed  CAS  Google Scholar 

  139. Peillon F, Bression D, Brandi AM, Racadot J. Pathogenesis of prolactinomas. The role of estrogen and dopamine receptors. In: Lamberts SWJ, Tilders FJ, EA van der Veen EA, Assies J, eds. Trends in diagnostic and treatment of pituitary adenomas. Amsterdam: Free University Press, 1984; 103–113.

    Google Scholar 

  140. Prior JC, Cox TA, Fairholm D, Kostashuk E, Nugent R. Testosterone-related exacerbation of a prolactin-producing macro-adenoma: a possible role for estrogen. J Clin Endocrinol Metab 64:391–394, 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Stefaneanu PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefaneanu, L. Pituitary sex steroid receptors: Localization and function. Endocr Pathol 8, 91–108 (1997). https://doi.org/10.1007/BF02739938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739938

Key Words

Navigation