Skip to main content
Log in

The infinitesimal holonomy group structure of EEnstein-Maxwell space-times

Структура бесконечно малой голономной группы пространства-времени Эйнштейна-Максвелла

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

This paper further investigates and interprets the structure of Einstein-Maxwell space-times in terms of the infinitesimal holonomy groups (IHG) of theC Riemannian connection. In particular, this investigation provides a fundamental physical classification of Einstein-Maxwell space-times in terms of the IHG group structure of the Riemann curvature tensor. It will be shown that the Maxwell fieldsF μλ and *F μλ of a given Einstein-Maxwell space-time define a representation of a subalgebra of the Lie algebra of the IHG. The main results of this paper are stated in the form of two theorems and a corollary. Also the results obtained here indicate that physical insight could be gained by studying more general gauge fields in terms of the IHG of the relevant Einstein-Yang-Mills space-times.

Riassunto

Questo lavoro studia ulteriormente e interpreta la struttura degli spazi-tempo di Einstein e Maxwell in termini dei gruppi infinitesimali di olonomia (IHG) della connessione riemannianaC . In particolare, questo studio fornisce una classificazione fisica fondamentale degli spazi-tempo di Einstein e Maxwell sulla base della struttura del gruppo IHG del tensore di curvatura di Riemann. Si mostra che i campi di MaxwellF μλ e *F μλ di un dato spazio-tempo di Einstein e Maxwell definiscono una rappresentazione di una subalgebra dell'algebra di Lie dell'IHG. I più importanti risultati di questo lavoro sono forniti sotto forma di due teoremi e un corollario. Anche il risultati ottenuti qui indicano che l'indagine fisica potrebbe essere migliorata studiando i campi di gauge più generali sulla base dell'IHG degli importanti spazi-tempo di Einstein e Yang-Mills.

Резюме

В этой статье исследуется и интерпретируется структура пространства-времени Эйнштейна-Максвелла в терминах бесконечно малых голономных групп. В частности, это исследование обеспечивает фундаментальную физическую классификацию пространства-времени Эйнштейна-Максвелла в терминах структуры бесконечно малой голономной группы для риманова тензора кривизны. Показывается, что Максвелловские поляF μλ и *F μλ для заданного пространства-времени Эйнштейна-Максвелла определяют представление субалгебры алгебры Ли для бесконечно малой голономной группы. Основные результаты этой статьи состоят в формулировке двух теорем и следствия. Полученные результаты указывают, что физический смысл может быть получен посредством исследования более общих калибровочных полей в терминах бесконечно малых голономых групп для соответствующего пространства-времени Эйнштейна-Янга-Миллса.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nijenhuis:Indag. Math.,15, 233, 241 (1953);J. A. Schouten:Ricci Calculus (Berlin, Heidelberg and Göttingen, 1954).

    Article  MathSciNet  Google Scholar 

  2. S. Kobayashi andK. Nomizu:Foundations of Differential Geometry, Vol.1 (New York, N. Y., and London, 1963);A. Lichnerowicz:Global of Connections and Holonomy Groups, edited byM. Cole (Leyden, 1976).

  3. See, for example,E. S. Abers andB. W. Lee:Phys. Rep.,9 C, 1 (1973);W. Drechsler andM. E. Meyer:Fibre Bundle Techniques in Gauge Theories (Berlin, Heidelberg and New York, N. Y., 1977).

    Article  ADS  MATH  Google Scholar 

  4. Throughout this paper we mainly follow the notations and definitions used bySchouten 1 J. A. Schouten:Ricci Calculus (Berlin, Heidelberg and Göttingen, 1954)

  5. For a discussion of some of the general features of the coupled Einstein-Yang-Mills equations see, for example,P. B. Yasskin:Phys. Rev. D,12, 2212 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  6. In this connection we mention that papers have appeared in the literature on the internal holonomy groups of Yang-Mills fields in flat space-time. See, for example,H. G. Loos:Nucl. Phys.,72, 677 (1965);J. Math. Phys.,8, 2114 (1967);T. Eguchi:Phys. Rev. D,13, 1561 (1976). Einstein spaces have been studied in terms of the IHG byJ. N. Goldberg andR. P. Kerr:J. Math. Phys.,2, 327, 332 (1961); and byJ. F. Shell (10)J. F. Schell:J. Math. Phys. (N. Y.),2, 202 (1961). In additionH. G. Loos:Ann. Phys. (N. Y.),36, 486 (1966), has used properties of the holonomy group of curved space-times in connection with a geometrical particle theory and related notions of symmetry breaking.

    Article  MathSciNet  Google Scholar 

  7. See, for example,J. L. Synge:Relativity: The Special Theory (Amsterdam and London, 1972). In this textSynge refers to the nonnull field as the general field.

  8. G. Y. Rainich:Trans. Am. Math. Soc.,27, 106 (1925);C. W. Misner andJ. A. Wheeler:Ann. Phys. (N. Y.),2, 525 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. F. Schell:J. Math. Phys. (N. Y.),2, 202 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  10. Nijenhuis' exact statement of this property is given in (1) ;J. A. Schouten:Ricci Calculus (Berlin, Heidelberg and Göttingen, 1954). page 233, footnote (1)A. Nijenhuis:Indag. Math.,15, 233, 241 (1953);J. A. Schouten:Ricci Calculus (Berlin, Heidelberg and Göttingen, 1954).

    Article  MathSciNet  MATH  Google Scholar 

  11. We followSchell (10)J. F. Schell:J. Math. Phys. (N. Y.),2, 202 (1961) in referring to the groups as «rotation groups» even though certain of the rotation groups might more properly be referred to as null rotation groups and Lorentz transformation groups.

  12. These necessary conditions (3.1), (3.2) and (3.3) are given, for example, in (9).. For simplicity we use condition (3.3) rather thanR 00≥0. In addition to these algebraic conditions there is also a differential condition (which is a consequence of requiring the Maxwell equations to be satisfied) that must hold if the space-time is to be a source-free Einstein-Maxwell space-time (9).G. Y. Rainich:Trans. Am. Math. Soc.,27, 106 (1925);C. W. Misner andJ. A. Wheeler:Ann. Phys. (N. Y.),2, 525 (1957). Since we are not concerned here with the differential condition, theorem 3.1 could equally as well apply to the more general class of space-times defined by the algebraic conditions alone.

    Article  MathSciNet  MATH  Google Scholar 

  13. In the already unified theory of Rainich-Misner-Wheeler (9) ;C. W. Misner andJ. A. Wheeler:Ann. Phys. (N. Y.),2, 525 (1957) the extremal (bivector) fields are constructed by taking the Maxwell square root of the Ricci part of the Riemann curvature tensor. In the IHG formalism these bivectors appear fundamentally at the level of the curvature tensor as generators of the IHG. Theorem 3.2 shows that the extremal fields obtained byRainich, Misner, Wheeler are, in fact, two of the generators of the IHG, except for null-field space-times with an IHG of rotation classR 3 ,R 6 , orR 10, when only one of the extremal fields can be a generator of the group.

    Article  MathSciNet  MATH  Google Scholar 

  14. This simple descriptive statement does not hold when the Maxwell fields are null fields and the IHG is of rotation classR 3,R 6, orR 10. For these three null-field cases corollary 3.1 shows that only the linear combination (3.11) can be chosen as a generator of the group.

  15. SeeJ. A. Schouten:Ricci Calculus (Berlin, Heidelberg and Göttingen, 1954), p. 153.

  16. In connection with these three cases see the remarks made in footnotes (14,16). These necessary conditions (3.1), (3.2) and (3.3) are given, for example, in (9) ;C. W. Misner andJ. A. Wheeler:Ann. Phys. (N. Y.),2, 525 (1957). For simplicity we use condition (3.3) rather thanR 00≥0. In addition to these algebraic conditions there is also a differential condition (which is a consequence of requiring the Maxwell equations to be satisfied that must hold if the space-time is to be a source-free Einstein-Maxwell space-time (9).G. Y. Rainich:Trans. Am. Math. Soc.,27, 106 (1925);C. W. Misner andJ. A. Wheeler:Ann. Phys. (N. Y.),2, 525 (1957)., Since we are not concerned here with the differential condition, theorem 3.1 could equally as well apply to the more general class of space-times defined by the algebraic conditions alone. This simple descriptive statement does not hold when the Maxwell fields are null fields and the IHG is of rotation classR 3,R 6, orR 10. For these three null-field cases corollary 3.1 shows that only the linear combination (3.11) can be chosen as a generator of the group.

    Article  MathSciNet  Google Scholar 

  17. In this connection the classification of unquantized Yang-Mills fields into radiative and nonradiative cases byEguchi (7). would be useful.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Clearly such space-times must have IHG generated by a set of bivector generators transforming into itself under the dual operation.

  19. For comparison we note that, for nonnull Einstein-Maxwell space-times with IHG in rotation classR 15,P ab (cf. equation (5.6)) takes the form (5.10) with β=γ=0.

  20. See, for example,C. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (San Francisco, Cal., 1970), p. 360, 361.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, L.K., Davis, W.R. The infinitesimal holonomy group structure of EEnstein-Maxwell space-times. Nuov Cim B 53, 209–232 (1979). https://doi.org/10.1007/BF02739891

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739891

Navigation