Skip to main content
Log in

Proof for the Weak and the Strong Energy Conditions Theorems in Einstein–Yang–Mills Theories

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We present the manifest proof of the validity of the local weak and strong energy conditions in all Einstein–Maxwell–Yang–Mills space-times where nonnull electromagnetic and Yang–Mills fields are present. To this end, we make use of the new tetrads introduced previously. These new tetrads have remarkable properties in curved four-dimensional Lorentzian space-times. For example, they diagonalize locally and covariantly any stress-energy tensor in Einstein–Maxwell space-times and also in Einstein–Maxwell–Yang–Mills space-times for nonnull electromagnetic and Yang–Mills fields. We use these properties in order to prove the energy conditions for any space-time with these characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Schoen and S. T. Yau, Commun. Math. Phys. 65, 45 (1979).

    Article  ADS  Google Scholar 

  2. P. Schoen and S. T. Yau, Phys. Rev. Lett. 42, 547 (1979).

    Article  ADS  Google Scholar 

  3. P. Schoen and S. T. Yau, Phys. Rev. Lett. 43, 1457 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, “A new proof of the positive energy theorem,” Commun. Math. Phys. 80, 381 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. R. Wald, General Relativity (University of Chicago Press, Chicago, 1984).

    Book  MATH  Google Scholar 

  6. A. Garat, J. Math. Phys. 46, 102502 (2005). A. Garat, “Erratum: Tetrads in geometrodynamics,” J. Math. Phys. 55, 019902 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Garat, “Isomorphism between the local Poincaré generalized translations group and the group of spacetime transformations \((\bigotimes LB1)^{4}\),” Rep. Math. Phys. 86 (3), 355–382 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Garat, “Singular gauge transformations in geometrodynamics,” Int. J. Geom. Methods Mod. Phys. 18 (10), 2150150 (35 pages) (2021).

  9. A. Garat, “Local groups of internal transformations isomorphic to local groups of space-time tetrad transformations,” Proc. 18th Lomonosov Conference on Elementary Particle Physics  (Moscow, Russia, 24-30 August 2017; Particle Physics at the Silver Jubilee of Lomonosov Conferences (World Scientific, 2019), pp. 510–514.

  10. A. Garat, “Einstein–Maxwell tetrad grand unification,” Int. J. Geom. Methods Mod. Phys. 17, 2050125 (2020).

    Article  MathSciNet  Google Scholar 

  11. S. Coleman and J. Mandula, Phys. Rev. 159 (5), 1251 (1967).

    Article  ADS  Google Scholar 

  12. S. Weinberg, Phys. Rev. 139, B597 (1965).

    Article  ADS  Google Scholar 

  13. L. O’Raifeartaigh, Phys. Rev. 139, B1052 (1965).

    Article  ADS  Google Scholar 

  14. A. Garat, “Tetrads in Yang–Mills geometrodynamics,” Grav. Cosmol. 20, 116–126, (2014); arXiv: gr-qc/0602049.

  15. A. Garat, “The new electromagnetic tetrads, infinite tetrad nesting and the non-trivial emergence of complex numbers in real theories of gravitation,” Int. J. Geom. Methods Mod. Phys. 14 (9), 1750132 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. Garat, “Tetrads in \(SU(3)\times SU(2)\times U(1)\) Yang–Mills geometrodynamics,” Int. J. Geom. Methods Mod. Phys. 15 (3), 1850045 (2018); arXiv: 1207.0912.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Misner and J. A. Wheeler, Ann. of Phys. 2, 525 (1957).

    Article  ADS  Google Scholar 

  18. S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, 1972).

  19. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973).

    Google Scholar 

  20. N. Cabibbo and E. Ferrari, Nuovo Cim. 23, 1147 (1962).

    Article  ADS  Google Scholar 

  21. H. Stephani , General Relativity (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  22. M. Carmeli, Classical Fields: General Relativity and Gauge Theory (J. Wiley & Sons, New York, 1982).

    MATH  Google Scholar 

  23. S. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, 1973).

    Book  MATH  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields; 4th ed. (Pergamon, London, 1975).

    MATH  Google Scholar 

  25. E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

    Article  ADS  Google Scholar 

  26. J. A. Schouten, Ricci Calculus: An Introduction to Tensor Calculus and Its Geometrical Applications (Springer, Berlin, 1954).

    Book  MATH  Google Scholar 

  27. A. Garat, “Gauge invariant method for maximum simplification of the field strength in non-Abelian Yang–Mills theories,” Int. J. Geom. Methods Mod. Phys. 12 (10), 1550104 (2015); arXiv: 1306.2174.

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, Manifolds and Physics (Elsevier Science Publishers B.V., 1987).

    MATH  Google Scholar 

  29. W. Greiner and B. Mueller, Quantum Mechanics, Symmetries (Springer, 1989).

    Book  Google Scholar 

  30. M. Kaku, Quantum Field Theory: A Modern Introduction (Oxford University Press, 1993).

    Google Scholar 

  31. J. Scherk and J. H. Schwarz, “Gravitation in the light cone gauge,” Gen. Rel. Grav.6, 537–550 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Garat, “Tetrads in low-energy weak interactions,” Int. J. Mod. Phys. A 33, 1850197 (2018); arXiv: gr-qc/0606075.

    Article  ADS  MATH  Google Scholar 

  33. A. Garat, “Dynamical symmetry breaking in geometrodynamics,” Teor. Mat. Fiz. 195, 313–328 (2018); arXiv: 1306.0602.

  34. A. Garat, “Dynamical symmetry breaking in geometrodynamics,” Theor. Math. Phys. 195, 764–776, (2018).

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Álvarez-Gaumé and M. A. Vázquez-Mozo, “Introductory Lectures on Quantum Field Theory,” arXiv: hep-th/0510040.

  36. O. Goldoni and M. F. A. da Silva, “Energy conditions for electromagnetic field in presence of cosmological constant,” in 5th International School on Field Theory and Gravitation (Cuiabá, Brazil, 2009).

    Google Scholar 

  37. E. Curiel, “A primer on energy conditions,” (in: D. Lehmkuhl, G. Schimann and E. Scholz, Eds., Towards a Theory of Space-Time Theories (Springer Science + Business Media, LLC 2017); Einstein Studies 13, 43–104. arXiv: 1405.0403.

  38. P. Breitenlohner, P. Forgács, and D. Maison, “Static spherically symmetric solutions of the Einstein–Yang–Mills equations,” Commun. Math. Phys. 163, 141–172 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J. Smoller, A. Wasserman, S. T. Yau, and J. B. McLeod, “Smooth static solutions of the Einstein-Yang Mills equations,” Commun. Math. Phys. 143, 115–147 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. R. Bartnik and J. McKinnon, “Particle-like solutions of the Einstein–Yang–Mills equations,” Phys. Rev. Lett. 61 141–144 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. F. Finster, “Local \(U(2,2)\) symmetry in relativistic quantum mechanics,” J. Math. Phys. 39, 6276–6290 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. F. Finster, J. Smoller, and S. T. Yau, “Particle-like solutions of the Einstein-Dirac equations,” Phys. Rev. D 59, 104020 (1999); arXiv: gr-qc/9801079.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. F. Finster, J. Smoller, and S. T. Yau, “Particle-like solutions of the Einstein-Dirac-Maxwell equations,” Phys. Lett. A 259, 431-436 (1999); arXiv: gr-qc/9802012.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. F. Finster, J. Smoller, and S. T. Yau, “Non-existence of black hole solutions for a spherically symmetric, static Einstein-Dirac-Maxwell system,” Commun. Math. Phys. 205, 249–262 (1999); arXiv: gr-qc/9810048.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. F. Finster, J. Smoller, and S. T. Yau, “Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background,” J. Math. Phys. 41, 2173 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. F. Finster, J. Smoller and S. T. Yau, “The interaction of Dirac particles with non-Abelian gauge fields and gravity—black holes,” Michigan Math. J. 47, 199–208 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Finster, N. Kamran, J. Smoller, and S. T. Yau, “Non-existence of time-periodic solutions of the Dirac equation in an axisymmetric black-hole geometry,” arXiv: gr-qc/9905047.

  48. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1994).

    Book  MATH  Google Scholar 

  49. J. Smoller and B. Temple, “Astrophysical shock-wave solutions of the Einstein equations,” Phys. Rev. D 51, 2733–2743 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  50. J. Smoller and A. Wasserman, “Uniqueness of extreme Reissner-Nordström solution in \(SU(2)\) Einstein-Yang Mills theory for spherically symmetric space-time,” Phys. Rev. D 52, 5812–5815 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  51. J. Smoller and A. Wasserman, “Extendability of solutions of the Einstein-Yang Mills equations,” Comm. Math. Phys. 194, 707-732 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. J. Smoller and A. Wasserman, “Existence of infinitely-many smooth, static global solutions of the Einstein-Yang Mills equations,” Commun. Math. Phys. 151 303–325 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J. Smoller, A. Wasserman, and S. T. Yau, “Existence of black hole solutions for the Einstein–Yang–Mills equations,” Commun. Math. Phys. 154, 377–401 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. A. G. Lisi, “A solitary wave solution of the Maxwell-Dirac equations,” J. Phys. A: Math. Gen. 28, 5385 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. H. P. Künzle, “Analysis of the static spherically symmetric \(SU(n)\) Einstein-Yang M ills equations,” Commun. Math. Phys. 162, 371–397 (1994).

    Article  ADS  MATH  Google Scholar 

  56. H. P. Künzle and A. K. M. Masood-ul-Alam, “Spherically symmetric static \(SU(2)\) Einstein-Yang Mills fields,” J. Math. Phys. 31, 928-935 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  57. P. Bizon, “Colored black holes,” Phys. Rev. Lett. 64, 2844 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. E. E. Donets, D. V. Gal’tsov, and M. Y. Zotov, “Oscillatory and power-law mass inflation in non-Abelian black holes,” arXiv: gr-qc/9612067.

  59. E. E. Donets, D. V. Gal’tsov, and M. Y. Zotov, “On singularities in non-Abelian black holes,” J. Exp. Theor. Phys. Letters 65, 895-901 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  60. M. S. Volkov and D. V. Galt’sov, “Gravitating non-Abelian solitons and black holes with Yang–Mills fields,” Phys. Rep. 319 (1-2), 1–83 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  61. A. A. Ershov and D. V. Gal’tsov, “Non-existence of regular monopoles and dyons in the \(SU(2)\) Einstein–Yang–Mills theory,” Phys. Lett. A 150, 159-162 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  62. R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity (McGraw-Hill, New York, 1975).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcides Garat.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garat, A. Proof for the Weak and the Strong Energy Conditions Theorems in Einstein–Yang–Mills Theories. Gravit. Cosmol. 29, 387–399 (2023). https://doi.org/10.1134/S0202289323040096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323040096

Navigation