Skip to main content
Log in

Orders of approximation in transport theory for electrons or holes in a scattering medium

Порядок аппроксимации в теории переноса электронов или дырок при рассеянии в среде

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

In the framework of the free-path method, a transport quantity for free electrons (or holes) either in gases or in semiconductors in the presence of a static and uniform electric fieldE can be expressed as a sum of terms, each containing as a factor a properly indexed functionV j (a)=V j (eE/m), which can be reduced to a series of integrals over the electron speedv. Such integrals are always finite even when nonphysical divergences appear in the corresponding terms of the expansion obtained by approximating the solution of the Boltzmann equation by truncated Legendre expansions. In a wide variety of cases, the integrals (appearing as terms of our series) can be calculated by series expansion, andV j (a) turns out to be given by a series in powers ofW 2/〈v 2〉≪1, whereW is the drift velocity. This ratio, for elastic collisions, can reach an asymptotic value (for highE fields) of the orderε 2=m/M, wherem andM are the masses of the electron and of a scattering centre, respectively. The integrands appearing in the integrals overv can be expanded in a power series of dimensionless terms containing the accelerationa=eE/m. The term ina s produces after integration overv, a corresponding term containing (W 2/〈v 2〉)s/2. With the aim of calculatingV j (a) we can, therefore, speak of approximation of orders if terms includinga s are retained in the integrands. This allows convenient truncations and the solution of many transport problems with the desired accuracy.

Riassunto

Nel contesto del metodo del cammino integrale, una quantità di trasporto relativa ad elettroni liberi (o buche) in gas o in semiconduttori in presenza di un campo elettricoE costante e uniforme può essere espressa come somma di termini, ognuno contenente come fattore una funzione (con appropriato indice)V j (a)=V j (eE/m) che può essere ridotta ad una serie rapidamente convergente di integrali suv ovev è la velocità termica degli elettroni. Nella maggior parte dei casi, gli integrali possono essere risolti per mezzo di sviluppi in serie, e quindiV j (a) risulta essere una serie rapidamente convergente diW 2/<v 2>≪1, doveW è la velocità di migrazione degli elettroni. Tale rapporto, per collisioni elastiche, può raggiungere un valore asintotico (per alti valori del campo elettricoE) dell'ordine diε 2=m/M, dovem eM sono rispettivamente le masse degli elettroni e delle molecole. Gli integrandi degli integrali suv possono essere sviluppati in una serie di numeri puri contenenti l'accelerazionea=eE/m e ad ogni potenza dia corrisponde, dopo integrazione, la medesima potenza di (W 2/<v 2>)1/2. Con lo scopo di calcolareV j (a) è possibile perciò parlare di approssimazione di ordines se i termini includentia s compaiono negli integrandi. Gli sviluppi ottenuti sono sempre convergenti anche quando vi sono divergenze non fisiche nei corrispondenti sviluppi ottenuti approssimando la soluzione dell'equazione di Boltzmann per mezzo di sviluppi troncati in polinomi di Legendre.

Резюме

В рамках метода свободного пробега транспортные величины для свободных электронов (или дырок) либо в газах, либо в полупроводниках в присутствии статического и однородного электрического поляE могут быть выражены, как сумма членов, каждый из которых содержит функциюV j (a)=V j (eE/m), причем указанные функции могут быть сведены к ряду интегралов по скорости электронаv. Такие интегралы всегда конечны, даже когда появляются нефизические расходимости в соответствующих членах разложения, полученного при приближенном решении уравнения Больцмана с помощью усеченного разложения по полиномам Лежандра. В ряде случаев интегралы (появляющиеся в членах наших разложений) могут быть вычислены с помощью разложения в ряд. Оказывается, чтоV j (a) представляется в виде ряда по степенямW 2/<v 2> ≪1, гдеW есть скорость дрейфа. Это отношение для упругих соударений может достигать асимптотической величины (для полей с большимиE) порядкаε 2=m/M, гдеm иM массы электрона и рассеивающего центра. Подынтегральные выражения в интегралах поv могут быть разложены в степенной ряд по безразмерному параметру, содержащему ускорениеa=eE/m. Член сa s, после интегрирования поv, дает соответствующий член, содержащий (W 2/<v 2>)s/2. При вычисленияхV j (a) мы можем говорить о приближении порядкаs, если члены, включающиеa s, остаются в подынтегральных выражениях. Указанная процедура позволяет произвести разумное обрывание ряда и получить решение многих транспортсых проблем с желаемой точностью.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See the appendix ofR. S. Crompton, M. T. Elford andA. G. Robertson:Aust. J. Phys.,23, 667 (1970); see alsoS. L. Paveri-Fontana:Aust. J. Phys.,25, 329 (1972).

    Article  ADS  Google Scholar 

  2. R. E. Robson andK. Kumar:Aust. J. Phys.,24, 835 (1971); alsoS. L. Paveri-Fontana:Proceedings of the IX International Symposium on Rarefied Gas Dynamics (Vienna, 1974).

    Article  ADS  Google Scholar 

  3. G. Cavalleri andG. Sesta:Phys. Rev.,170, 286 (1968).

    Article  ADS  Google Scholar 

  4. G. Cavalleri:Phys. Rev. Lett.,23, 907 (1969).

    Article  ADS  Google Scholar 

  5. S. L. Paveri-Fontana:Lett. Nuovo Cimento,1, 1259 (1970).

    Article  Google Scholar 

  6. G. Cavalleri andS. L. Paveri-Fontana:Phys. Rev. A,6, 327 (1972).

    Article  ADS  Google Scholar 

  7. G. L. Braglia:Nuovo Cimento B,70, 169 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. L. Braglia:Lett. Nuovo Cimento,3, 295 (1970).

    Article  Google Scholar 

  9. G. L. Braglia:Lett. Nuovo Cimento,1, 983 (1971).

    Article  Google Scholar 

  10. G. Cavalleri andR. Bonalumi:Nuovo Cimento B,55, 318 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Cavalleri andR. Bonalumi:Nuovo Cimento B,55, 375 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Cavalleri:Nuovo Cimento B,55, 340 (1980).

    ADS  Google Scholar 

  13. G. Cavalleri andE. Gatti: to be published.

  14. See sect.3 ofH. R. Skullerud:J. Phys. B,2, 696 (1969).

    Article  ADS  Google Scholar 

  15. See, for example,R. W. Crompton, M. T. Elford andR. L. Jory:Aust. J. Phys.,20, 369 (1967); see also ref. (1).R. S. Crompton, M. I. Elford andA. G. Robetson:Aust J. Phys.,23, 667 (1970).

    Article  ADS  Google Scholar 

  16. Actually the velocityv, to be used inv=Nσv, is the relative velocity between the electron and the collided molecule, so that, if the absolute temperatureT≠0, we havev≠0. However, because of the very small ratiom/M, v can be much smaller than <v>. Consequently, to havev≠0 and, therefore,v≠0 eliminates the divergences in the terms of a Taylor expansion of (6), but the values obtained forV(a) are very different from the correct values. the relevant differences will be evaluated for the drift velocity in ref. (12).

    ADS  Google Scholar 

  17. A. G. Robertson:J. Phys. B,5, 648 (1972); see alsoD. G. Thompson:J. Phys. B,4, 468 (1971).

    Article  ADS  Google Scholar 

  18. G. Cavalleri, R. Di Lascio andV. Giuntoli:Nuovo Cimento B,55, 379 (1980).

    Google Scholar 

  19. Consider, for example, the monoenergetic drift velocityw(v 0) obtained by the splitting (8).. We get in the casev=v/λ with λ(=mean free path)=const and for isotropic scatteringw(v 0) ≅ (2av 0/λ)/3[(v 0/λ)+b(a)]2. If we putb(a)=0, we obtain the expression given byJ. S. E. Townsend (Phil. Mag.,22, 145 (1936), see also the introduction of ref. (3)G. L. Braglia:Lett. Nuovo Cimento,3, 295 (1970), which is far from being satisfactory whenv 0→0. This expression, like any term of a Taylor expansion ofV j (a) in power series ofa, corresponds to takingv=v 0 during a flight, as if the electric field were ineffective.

    Article  Google Scholar 

  20. S. Chapman andT. G. Cowling:The Mathematical Theory of Nonuniform Gases, 2nd edition (Cambridge, 1952), p. 350.For the same form of the second side of (18) seeG. H. Wannier:Am. J. Phys.,39, 281 (1971). This author (and also other authors) attributes eq. (18) toB. Davydov:Phys. Z. Sowjetunion,8, 59 (1935). ButDavydov found eq. (18) only whenv 0v and, in this particular case, eq. (18) was already discovered byF. B. Pidduck:Proc. Math. Soc. London,15, 89 (1916). See alsoQ. J. Math.,7, 199 (1936) andL. G. Huxley andR. W. Crompton:The diffusion and Drift of Electrons in Gases, sect1. 11 (New York, N. Y., 1974), p. 23.

    Google Scholar 

  21. G. L. Braglia andL. Ferrari:Nuovo Cimento,7 B, 119 (1972).

    Google Scholar 

  22. See, for example,F. V. Dwight:Tables on Integrals and Other Mathematical Data, 4th edition (New York, N. Y., 1961), p. 230.

  23. SeeHandbook of Mathematical Functions, edited byM. Abramowitz andI. A. Stegun, Chapt. 6 (New York, N. Y., 1965).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by ENEL.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalleri, G., Gatti, E. & Gonzalez-Gascon, F. Orders of approximation in transport theory for electrons or holes in a scattering medium. Nuov Cim B 55, 291–317 (1980). https://doi.org/10.1007/BF02739163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739163

Navigation