Skip to main content
Log in

Effects of physical parameters on the cylindrical model for volume measurement by conductance

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Despite its undisputed utility for determining changes in ventricular pressure-volume relationships, the conductance catheter technique has not been proven reliable for measuring absolute volume. This limitation is due to violations of the assumptions inherent in the cylindrical model on which the method is based (i.e., homogeneous electric field and no leakage current). The purpose of this investigation was to relate cylindrical model correction factors to the physical environment of the catheter and to the cylindrical equation. Physical measurements of saline-filled, nonconductive cylinders using a four-electrode conductance catheter were compared with a three-dimensional finite element model of the physical apparatus. These measurements were incorporated into a parallel conductance model to relate physical parameters to corrections in the cylindrical equation for volume measurement. Excellent agreement between measured and modeled data was found. Results demonstrated a nonlinear relationship between the field nonhomogeneity correction factor (α) and cylinder diameter. The relationship between α and diameter was consistent with a theoretical extrapolation of cylinder diameter toward infinity. An inverse relationship between α and the parallel conductance volume (V P) was also clarified. The parallel conductance model was able to demonstrate opposite effects of the physical presence of the catheter body and electrodes, which tended to cancel out any net effect on measured conductance. Results of this investigation and the developed finite element model clarify the nature of the correction terms in the cylindrical model and may lead to greater application of the conductance technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applegate, R.J., C.P. Cheng, and W.C. Little. Simultaneous conductance catheter and dimension assessment of left ventricle volume in the intact animal.Circulation 81: 638–648, 1990.

    PubMed  CAS  Google Scholar 

  2. Baan, J., E. T. Van Der Velde, H. G. De Bruin, G. J. Smeenk, J. Koops, A. D. Van Duk, D. Temmerman, J. Senden, and B. Buis. Continuous measurement of left ventricular volume in animals and humans by conductance catheter.Circulation 70:812–823, 1984.

    PubMed  CAS  Google Scholar 

  3. Boltwood, C. M., {jrJr.}, R. F. Appleyard, and S. A. Glantz. Left ventricular volume measurement by conductance catheter in intact dogs. Parallel conductance volume depends on left ventricular size.Circulation 80:1360–1377, 1989.

    PubMed  Google Scholar 

  4. Burkhoff, D., E. Ven Der Velde, D. Kass, J. Baan, W. L. Maughan, and K. Sagawa. Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts.Circulation 72:440–447, 1985.

    PubMed  CAS  Google Scholar 

  5. Dickstein, M. L., O. Yano, H. M. Spotnitz, and D. Burkhoff. Assessment of right ventricular contractile state with the conductance catheter technique in the pig.Cardiovasc. Res. 29:820–826, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Ferguson, J. J., {jrIII}, M. J. Miller, P. Sahagian, J. M. Aroesty, and R. G. McKay. Assessment of aortic pressure-volume relationships with an impedance catheter.Cathet. Cardiovasc. Diagn. 15:27–36, 1988.

    Article  PubMed  Google Scholar 

  7. Ferguson, J. J. {jrIII}, M. J. Miller, P. Sahagian, J. M. Aroesty, and R. G. McKay. Effects of respiration and vasodilation on venous volume in animals and man, as measured with an impedance catheter.Cathet. Cardiovasc. Diagn. 16:25–34, 1989.

    Article  PubMed  Google Scholar 

  8. Gawne, T. J., K. S. Gray, and R. E. Goldstein, Estimating left ventricular offset volume using dual-frequency conductance catheters.J. Appl. Physiol. 63:872–876, 1987.

    PubMed  CAS  Google Scholar 

  9. Heringa, A., D. F. Stegeman, G. J. H. Uijen, and J. P. C. De Weerd. Solution methods of electrical field problems in physiology.IEEE Trans. Biomed. Eng. BME-29:34–42, 1982.

    Article  Google Scholar 

  10. Lankford, E. B., D. A. Kass, W. L. Maughan, and A. A. Shoukas. Does volume catheter parallel conductance vary during a cardiac cycle?Am. J. Physiol. 258:H1933-H1942, 1990.

    PubMed  CAS  Google Scholar 

  11. Miller, M. J., R. G. McKay, J. J. Ferguson, P. Sahagian, S. Nakao, P. C. Come, and W. Grossman. Right atrial pressure-volume relationships in tricuspid regurgitation.Circulation 73:799–808, 1986.

    PubMed  CAS  Google Scholar 

  12. Mur, G., and J. Baan. Computation of the input impedances of a catheter for cardiac volumetry.IEEE Trans. Biomed. Eng. BME-31:448–453, 1984.

    Article  Google Scholar 

  13. Plonsey, R., and D. G. Fleming. Bioelectric Phenomena. New York: McGraw-Hill, 1969, 380 pp.

    Google Scholar 

  14. Salo, R. W. The theoretical basis of a computational model for the determination of volume by impedance.Automedica 11:299–310, 1989.

    Google Scholar 

  15. Salo, R. W., T. G. Wallner, and B. D. Pederson, Measurement of ventricular volume by intracardiac impedance: theoretical and empirical approaches.IEEE Trans. Biomed. Eng. BME-33:189–195, 1986.

    Article  Google Scholar 

  16. Sepulveda, N. G. Electric Field Distribution in Three Dimensional Regions Using the Finite Element: Method. New Orleans: Tulane University, Ph.D. Dissertation, 1984.

    Google Scholar 

  17. Spinelli, J. C., and M. E. Valentinuzzi. Conductivity and geometrical factors affecting volume measurements with an impedancimetric catheter.Med. Biol. Eng. Comput. 24:460–464, 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Stamato, T. M. R.s. Szwarc, and L. N. Benson. Measurement of right ventricular volume by conductance catheter in closed-chest pigs.Am. J. Physiol. 269:H869-H876, 1995.

    PubMed  CAS  Google Scholar 

  19. Steendijk, P., E. T. van der Velde, and J. Baan. Left ventricular stroke volume by single and dual excitation of conductance catheter in dogs.Am. J. Physiol. 264:H2198-H2207, 1993.

    PubMed  CAS  Google Scholar 

  20. Steendijk, P., E. T. van der Velde, and J. Baan. single and dual excitation of the conductance-volume catheter analysed in a spherioidal mathematical model of the canine left ventricle.Eur. Heart J. 13:28–34, 1992.

    PubMed  Google Scholar 

  21. Szwarc, R. S., D. Laurent, P.R. Allegrini, and H. A. Ball. Conductance catheter measurement of left ventricular volume: evidence for nonlinearity within cardiac cycle.Am. J. Physiol. 268:H1490-H1498, 1995.

    PubMed  CAS  Google Scholar 

  22. Szwarc, R. S., L. L. Mickleborough, S.-I. Mizuno, G. J. Wilson, P. Liu, and S. Mohamed. Conductance catheter measurements of left ventricular volume in the intact dog: parallel conductance is independent of left ventricular size.Cardiovasc. Res. 28:252–258, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Woodard, J. C., C. D. Bertram, and B. S. Gow. Effect of radial position on volume measurements using the conductance catheter.Med. Biol. Eng. Comput. 27:25–32, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hettrick, D.A., Battocletti, J.H., Ackmann, J.J. et al. Effects of physical parameters on the cylindrical model for volume measurement by conductance. Ann Biomed Eng 25, 126–134 (1997). https://doi.org/10.1007/BF02738544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738544

Keywords

Navigation