Skip to main content
Log in

Calculation of electronic structure ofTCNQ molecule by self-consistent statistical-exchange multiple-scattering method

Вычсление электронной структуры молекулы TCNQ с помощью само-согласованного статистического метода многократного рассеяния

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The electronic structure of the TCNQ molecule has been determined by the self-consistent statistical-exchange multiple-scattering method. The calculation is based on an overlapping-atomic-sphere model in which the nonoverlapping atomic spheres are uniformly scaled so that the calculated virial ratio is equal to −2. This model can be further improved by adjusting the outer-sphere radius so that the first theoretical and experimental ionization energies are in registry. A realistic energy level structure is obtained for the higher occupied and lower excited levels. The present approach appears capable of dealing with large organic molecules as well as arrays of such molecules, including dimers, trimers and charge transfer complexes.

Riassunto

Si è determinata la struttura elettronica della molecola di TCNQ col metodo dello scattering multiplo di scambio statistico autocoerente. Il calcolo è basato su un modello di sfere atomiche sovrapposte in cui le sfere atomiche non sovrapposte sono uniformemente variate di scala in modo che il rapporto viriale calcolato sia uguale a −2. Si può ulteriormente migliorare questo modello regolando il raggio della sfera esterna in modo che le prime energie di ionizzazione teoriche e sperimentali siano in corrispondenza. Si ottiene una struttura realistica dei livelli di energia per i livelli superiori occupati e per i livelli inferiori eccitati. Questo approccio sembra atto a trattare grandi molecole organiche ed anche sistemi di tali molecole, compresi i dimeri, i trimeri e i complessi di trasferimento di carica.

Резюме

Вычисляется электронная структура молекулы TCNQ с помощью само-согласованного статистического метода многократного рассеяния. Вычисление основывается на перекрывающейся сфере плюс модель, для которой выполняется вириальная теорема. Получаются реалистические значения для порогов возбуждения и ионизации молекулы TCNQ. Предложенный подход оказывается очень удобным для рассмотрения больщих органических молекул, а также цепочек таких молекул, включая димеры, тримеры и комплексы с перезарядкой.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Foster:Organic Charge-Transfer Complexes (London, 1969).

  2. F. H. Herbstein: inPerspectives in Structural Chemistry, edited byJ. D. Dunitz andJ. A. Ibers, Vol.4 (New York, N. Y., 1971), p. 166.

  3. I. F. Shchegolev:Phys. Status Solidi,12 (a), 9 (1972).

    Article  ADS  Google Scholar 

  4. J. Ferraris, D. O. Cowan, V. Walatka jr. andJ. H. Perlstein:Journ. Amer. Chem. Soc.,95, 948 (1973).

    Article  Google Scholar 

  5. A. J. Epstein, S. Etemad, A. F. Garito andA. J. Heeger:Phys. Rev. B,5, 952 (1972);L. B. Coleman, J. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito andA. J. Heeger:Solid State Comm.,12, 1125 (1973); and subsequent papers.

    Article  ADS  Google Scholar 

  6. K. H. Johnson:Journ. Chem. Phys.,45, 3085 (1966).

    Article  ADS  Google Scholar 

  7. J. C. Slater andK. H. Johnson:Phys. Rev. B,5, 844 (1972).

    Article  ADS  Google Scholar 

  8. J. C. Slater:Adv. Quantum Chem.,6, 1 (1972).

    Article  ADS  Google Scholar 

  9. K. H. Johnson:Adv. Quantum Chem.,7, 143 (1973).

    Article  ADS  Google Scholar 

  10. K. H. Johnson, J. G. Norman jr. andJ. W. D. Connolly: inComputational Methods for Large Molecules and Localized States in Solids, edited byF. Herman, A. D. McLean andR. K. Nesbet (New York, N. Y., 1973), p. 161.

  11. D. A. Liberman andI. P. Batra:Journ. Chem. Phys.,59, 3723 (1973).

    Article  ADS  Google Scholar 

  12. R. E. Long, R. A. Sparks andK. N. Trueblood:Acta Cryst.,18, 932 (1965). However, the C−H bond distance was taken as 1.09 Å (neutron scattering value).

    Article  Google Scholar 

  13. K. H. Schwarz:Phys. Rev. B,5, 2466 (1972). We have used Schwarz’s values for C (0.759) and N (0.752). For H, we used 0.77 (based on recent unpublished spinpolarized atomic calculations byJ. H. Wood).

    Article  ADS  Google Scholar 

  14. J. C. Slater:Journ. Chem. Phys.,57, 2389 (1972).

    Article  ADS  Google Scholar 

  15. K. H. Johnson andF. C. Smith jr.: unpublished.

  16. D. A. Liberman andI. P. Batra: IBM Research Report RJ 1224 (May, 1973).

  17. W. D. Grobman, R. A. Pollak, D. E. Eastman, E. T. Maas jr. andB. A. Scott:Phys. Rev. Lett.,32, 534 (1974).

    Article  ADS  Google Scholar 

  18. F. Herman, A. R. Williams andK. H. Johnson: submitted toJourn. Chem. Phys.

  19. D. A. Liberman: unpublished.

  20. N. Rösch, W. G. Klemperer andK. H. Johnson:Chem. Phys. Lett.,23, 149 (1973);N. Rösch andK. H. Johnson:Chem. Phys. Lett.,24, 179 (1974);I. P. Batra andO. Robaux:Chem. Phys. Lett. (in press).

    Article  ADS  Google Scholar 

  21. J. Keller:Journ. Quantum Chem., in press.

  22. F. A. Cotton:Group Theory with Chemical Applications, Second Edition (New York, N. Y., 1971).

  23. J. N. A. Ridyard, Perkin-Elmer Ltd.: private communication.

  24. S. Hiroma, H. Kuroda andH. Akamatu:Bull. Chem. Soc. Japan,43, 3626 (1970).

    Article  Google Scholar 

  25. E. Menefee andY.-H. Pao:Journ. Chem. Phys.,36, 3472 (1972). ref. (24–28)S. Hiroma, H. Kuroda andH. Akamatu:Bull. Chem. Soc. Japan,43, 3626 (1970).E. Menefee andY.-H. Pao:Journ. Chem. Phys.,36, 3472 (1972).D. A. Lowitz:Journ. Chem. Phys.,46, 4698 (1967).S. Hiroma, H. Kuroda andH. Akamatu:Bull. Chem. Soc. Japan,44, 9 (1971).H. T. Jonkman andJ. Kommandeur:Chem. Phys. Lett.,15, 496 (1972) simply by interchanging subscripts 1 and 3,e.g., ourb 1u becomes theirb 3u.

    Article  ADS  Google Scholar 

  26. D. A. Lowitz:Journ. Chem. Phys.,46, 4698 (1967).

    Article  ADS  Google Scholar 

  27. S. Hiroma, H. Kuroda andH. Akamatu:Bull. Chem. Soc. Japan,44, 9 (1971).

    Article  Google Scholar 

  28. H. T. Jonkman andJ. Kommandeur:Chem. Phys. Lett.,15, 496 (1972).

    Article  ADS  Google Scholar 

  29. Y. Iida:Bull. Chem. Soc. Japan,42, 71 (1969). See also ref. (24–28).S. Hiroma, H. Kuroda andH. Akamatu:Bull. Chem. Soc. Japan,43, 3626 (1970).E. Menefee andY.-H. Pao:Journ. Chem. Phys.,36, 3472 (1972).D. A. Lowitz:Journ. Chem. Phys.,46, 4698 (1967).S. Hiroma, H. Kuroda andH. Akamatu:Bull. Chem. Soc. Japan,44, 9 (1971).H. T. Jonkman andJ. Kommandeur:Chem. Phys. Lett.,15, 496 (1972).

    Article  Google Scholar 

  30. F. Herman andI. P. Batra:Phys. Rev. Lett.,33, 94 (1974).

    Article  ADS  Google Scholar 

  31. F. Herman, W. E. Rudge, I. P. Batra, B. I. Bennett andK. H. Johnson: to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper presented at theConference on Perspectives for the Calculation of Many-Electron Interactions (Cecam Colloquium), Taormina, 17–21 September 1973.

Exchange Professor, Université de Paris VI, September 1973.

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, F., Batra, I.P. Calculation of electronic structure ofTCNQ molecule by self-consistent statistical-exchange multiple-scattering method. Nuov Cim B 23, 282–291 (1974). https://doi.org/10.1007/BF02737510

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737510

Navigation