Skip to main content

Simple Approaches to Calculate Correlation Energy in Polyatomic Molecular Systems

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions

Abstract

Ab initio calculation including electron correlation are still extremely costly, except for the smallest atoms and molecules. In this paper we present some simple semi-empirical methods to obtain correlation energy. These methods are based on the relation between energy and the off-diagonal density matrix elements, which represent the bonding between atoms in the molecule. The results of our previous studies are reported here and compared with the results obtained by using more accurate techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Wigner, Phys. Rev. 46, 1002 (1934). DOI 10.1103/PhysRev.46.1002

    Article  ADS  Google Scholar 

  2. C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934). DOI 10.1103/PhysRev.46.618

    Article  ADS  Google Scholar 

  3. J.A. Pople, R. Seeger, R. Krishnan, Int. J. Quantum Chem. 12(S11), 149 (1977). DOI 10.1002/qua.560120820

    Article  Google Scholar 

  4. D. Hegarty, M.A. Robb, Mol. Phys. 38(6), 1795 (1979). DOI 10.1080/00268977900102871

    Article  ADS  Google Scholar 

  5. C. Hollister, O. Sinanoglu, J. Am. Chem. Soc. 88(1), 13 (1966). DOI 10.1021/ja00953a003

    Article  Google Scholar 

  6. N.H. March, P. Wind, Mol. Phys. 77(4), 791 (1992). DOI 10.1080/00268979200102771

    Article  ADS  Google Scholar 

  7. A. Grassi, G.M. Lombardo, N.H. March, R. Pucci, Mol. Phys. 81(5), 1265 (1994). DOI 10.1080/00268979400100851

    Article  ADS  Google Scholar 

  8. A. Savin, H. Stoll, H. Preuss, Theor. Chim. Acta 70(6), 407 (1986). DOI 10.1007/BF00531922

    Article  Google Scholar 

  9. P. Gombás, Pseudopotentials (Springer, New York, 1967)

    Book  Google Scholar 

  10. N. Spartà, A. Grassi, G.M. Lombardo, G. Piccitto, R. Pucci, N.H. March, Mol. Phys. 83(6), 1047 (1994). DOI 10.1080/00268979400101771

    Article  ADS  Google Scholar 

  11. S. Kais, S.M. Sung, D.R. Herschbach, Int. J. Quantum Chem. 49(5), 657 (1994). DOI 10.1002/qua.560490511

    Article  Google Scholar 

  12. A. Grassi, G.M. Lombardo, N.H. March, R. Pucci, Mol. Phys. 86(5), 1229 (1995). DOI 10.1080/00268979500102691

    Article  ADS  Google Scholar 

  13. D. Cremer, Journal of Computational Chemistry 3(2), 154 (1982). DOI 10.1002/jcc.540030206

    Article  Google Scholar 

  14. C.A. Coulson, Proc. R. Soc. Lond. A 169(938), 413 (1939). DOI 10.1098/rspa.1939.0006

    Article  ADS  Google Scholar 

  15. E. Hückel, Z. Physik 70, 204 (1942)

    Article  Google Scholar 

  16. P.O. Löwdin, J. Chem. Phys. 18(3), 365 (1950). DOI 10.1063/1.1747632

    Article  ADS  Google Scholar 

  17. A.B. Sannigrahi, in Advances in Quantum Chemistry, vol. 23, ed. by P.O. Löwdin, J.R. Sabin, M.C. Zerner (Academic Press, 1992), pp. 301–351. DOI 10.1016/S0065-3276(08)60032-5

  18. A. Grassi, G.M. Lombardo, N.H. March, R. Pucci, Mol. Phys. 87(3), 553 (1996). DOI 10.1080/00268979600100381

    Article  ADS  Google Scholar 

  19. A. Grassi, G.M. Lombardo, G. Forte, G.G.N. Angilella, R. Pucci, N.H. March, Mol. Phys. 104, 453 (2006). DOI 10.1080/00268970500404273

    Article  ADS  Google Scholar 

  20. A. Grassi, G.M. Lombardo, G. Forte, G.G.N. Angilella, R. Pucci, N.H. March, Mol. Phys. 104, 1447 (2006). DOI 10.1080/00268970500509899

    Article  ADS  Google Scholar 

  21. L.A. Curtiss, K. Raghavachari, G.W. Trucks, J.A. Pople, J. Chem. Phys. 94(11), 7221 (1991). DOI 10.1063/1.460205

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Grassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grassi, A., Lombardo, G.M., Forte, G. (2017). Simple Approaches to Calculate Correlation Energy in Polyatomic Molecular Systems. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_20

Download citation

Publish with us

Policies and ethics