Skip to main content
Log in

Immediate upstream promoter regions required for neurospecific expression of SNAP-25

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The promoter structure and regulation ofSnap, a gene encoding the presynaptic t-SNARE SNAP-25 implicated in synaptic vesicle docking and fusion, was studied. Transcription start-site analysis revealed two major start sites located 42 nucleotides apart. Nucleotide sequence of a promoter region 2073 nucleotides upstream of the first transcription site contains three AP-1, one CRE sequence, and three Sp1-like sites close to the TATA box. Further upstream of these sites two TG repeats were found. The ability of regions within the 5′ upstream sequence to promote basal neural-specific expression in tissue culture cells was evaluated using a series of constructs containing bothSnap gene start sites with progressively restricted 5′ sequence linked to the chloramphenicol acetyl transferase (CAT) reporter gene. CAT expression was maximal in neuron-like undifferentiated ND7 and PC12 cells transfected with constructs containingSnap sequences up to 127 bp from the start site. In contrast, nonneuronal fibroblast cell lines did not express significant amounts of CAT, suggesting that this short 127-bp sequence is sufficient to drive neural specific expression of SNAP-25. Band shift analysis of oligonucleotides spanning from −127 to −41 bp of theSnap promoter revealed three distinct DNA-protein complexes generated by brain nuclear extracts and one by liver nuclear extracts, indicating that transcription factors that bind to this 86-bp sequence located just upstream of the TATA box are involved in regulation of basal neurospecific expression of this gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bark I. C. (1993) Structure of the chicken gene for SNAP-25 reveals duplicated exons encoding distinct isoforms of the protein.J. Mol. Biol. 233, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Bark I. C., Hahn K. M., Ryabinin A. E., and Wilson M. C. (1995) Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development.Proc. Natl. Acad. Sci. USA 92, 1510–1524.

    Article  PubMed  CAS  Google Scholar 

  • Bark I. C. and Wilson M. C. (1994) Regulated vesicular fusion in neurons—snapping together the details.Proc. Natl. Acad. Sci. USA 91, 4621–4624.

    Article  PubMed  CAS  Google Scholar 

  • Basi G. S., Jacobson R. D., Virag I., Schilling J., and Skene J. H. P. (1987) Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth.Cell 49, 785–791.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Calzone F. J., Britten R. J., and Davidson E. H. (1987) Mapping of gene transcripts by nuclease protection assays and cDNA primer extension.Meth. Enzymol. 152, 611–632.

    Article  PubMed  CAS  Google Scholar 

  • Catsicas S., Catsicas M., Keyser K., Karten H. J., Wilson M. C., and Milner R. J. (1992) Differential expression of the presynaptic protein SNAP-25 in mammalian retina.J. Neurosci. Res. 33, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Catsicas S., Larhammar D., Blomqvist A., Sanna P. P., Milner R. J., and Wilson M. C. (1991) Expression of a conserved, cell-type specific protein in nerve terminals coincides with synaptogenesis.Proc. Natl. Acad. Sci. USA 88, 785–789.

    Article  PubMed  CAS  Google Scholar 

  • Gorman C. M. (1985) High efficiency gene transfer into mammalian cells, inDNA Cloning, A Practical Approach, vol. 2 (Glover D. M., ed.), IRL, Oxford, pp. 143–150.

    Google Scholar 

  • Greene L. A. and Tishler A. S. (1976) Establishment of noradrenergic clonal cell line of rat adrenal pheochromocytoma cell which respond to nerve growth factor.Proc. Natl. Acad. Sci. USA 73, 2424–2428.

    Article  PubMed  CAS  Google Scholar 

  • He X. and Rosenfeld M. G. (1991) Mechanisms of complex transcriptional regulation: implications for brain development.Neuron 7, 183–196.

    Article  PubMed  CAS  Google Scholar 

  • Hess E. J., Collins K. A., and Wilson M. C. (1994) Deletion mutation of theSnap gene in mouse models attention deficit hyperactivity disorder.Soc. Neurosci. Abst. 20, 171.

    Google Scholar 

  • Jacobsson G., Bean A. J., Scheller R. H., Junti-Berggren L., Deeney J. T., Berggren P. O., and Meister B. (1994) Identification of synaptic protein and their isoform mRNAs in compartments of pancreatic endocrine cells.Proc. Natl. Acad. Sci. USA 91, 12,487–12,491.

    Article  CAS  Google Scholar 

  • Jainchill J. L., Aaronson S. A., and Todaro G. J. (1969) Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells.J. Virol. 4, 549–553.

    PubMed  CAS  Google Scholar 

  • Karns L. R., Ng S.-C., Freeman J. A., and Fishman M. C. (1987) Cloning of complementary DNA for GAP-43, a neuronal growth-associated protein.Science 236, 597–600.

    Article  PubMed  CAS  Google Scholar 

  • Lakin N. D., Morris P. J., Theil T., Sato T., Möröy T., Wilson M. C., and Latchman D. S. (1995) Regulation of neurite outgrowth and SNAP-25 gene expression by Brn-3a.J. Biol. Chem. 270, 15,858–15,863.

    CAS  Google Scholar 

  • Lillycrop K. A., Budhram V. S., Lakin N. D., Terrenghi G., Wood J. N., Polak J. M., and Latchman D. S. (1992) A novel POU family transcription factor is closely related to Brn-3 but has a distinct expression pattern in neuronal cells.Nucleic Acid. Res. 20, 5093–5096.

    Article  PubMed  CAS  Google Scholar 

  • Lustig R. H., Hua P., Wilson M. C., and Federoff H. J. (1993) Ontogeny, sex dimorphism, and neonatal sex hormone determination of synapse-associated messenger RNAs in rat brain.Mol. Brain Res. 20, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson I. and Russell W. (1966) Transformations in hamster cells mediated by mycoplasmas.Nature 210, 1343–1345.

    Article  PubMed  CAS  Google Scholar 

  • Mandel G. and McKinnon D. (1993) Molecular basis of neural-specific gene expression.Ann. Rev. Neurosci. 16, 323–345.

    Article  PubMed  CAS  Google Scholar 

  • Morgan J. I. and Curran T. (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenesfos andjun.Ann. Rev. Neurosci. 14, 421–451.

    Article  PubMed  CAS  Google Scholar 

  • Neve R. L., Perrone-Bizzozero N. L., Finklenstein S., Zwiers H., Bird E., Kurnit D. M., and Benowitz L. I. (1987) The neuronal growth-associated protein GAP-43 (B-50, F1): neuronal specificity, developmental regulation, distribution of the human and rat mRNAs.Mol. Brain Res. 2, 177–183.

    Article  CAS  Google Scholar 

  • Nevidi E., Basi G. S., Akey I. V., and Skene J. H. P. (1992) A neural-specific GAP-43 core promoter located between unusual DNA elements that interact to regulate its activity.J. Neurosci. 12, 691–704.

    Google Scholar 

  • Osen-Sand A., Catsicas M., Staple J. K., Jones K. A., Ayala G., Knowles J., Grenningloh G., and Catsicas S. (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo.Nature 364, 445–448.

    Article  PubMed  CAS  Google Scholar 

  • Oyler G. A., Higgins G. A., Hart R. A., Battenberg E., Billingsley M., Bloom F. E., and Wilson M. C. (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations.J. Cell Biol. 109, 3039–3052.

    Article  PubMed  CAS  Google Scholar 

  • Oyler G. A., Polli J. W., Higgins G. A., Wilson M. C., and Billingsley M. L. (1992) Distribution and expression of SNAP-25 immunoreactivity in rat brain, rat PC12 cells and human SMS-KCNR neuroblastoma cells.Dev. Brain Res. 65, 133–146.

    Article  CAS  Google Scholar 

  • Oyler G. A., Polli J. W., Wilson M. C., and Billingsley M. L. (1991) Developmental expression of the synaptosomal associated protein (SNAP-25) in rat brain.Proc. Natl. Acad. Sci. USA 88, 5247–5251.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A., Chan S. Y., Henzel W., Haskell C., Kuang W.-J., Chen E., Willcox J. N., Ullrich A., Goeddel D. V., and Routtenberg A. (1987) Primary structure and mRNA localization of protein F1, a growth related protein kinase C substrate associated with synaptic plasticity.EMBO J. 6, 3641–3646.

    PubMed  CAS  Google Scholar 

  • Sadoul K., Lang J., Montecucco C., Weller U., Regazzi R., Catsicas S., Wollheim C. B., and Hablan P. A. (1995) SNAP-25 is expressed in islets of Langerhans and is involved in insulin release.J. Cell Biol. 128, 1019–1028.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E. F., and Maniatis T. (1989)Molecular Cloning: A Laboratory Manual. Cold Springer Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanger F., Nicklen S., and Coulsen A. R. (1977) DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Sanna P. P., Bloom F. E., and Wilson M. C. (1991) Dibutyril-cAMP induces SNAP-25 translocation into the neurites of PC12.Dev. Brain Res. 59, 104–108.

    Article  CAS  Google Scholar 

  • Shapiro D. J., Sharp P. A., Wahli W. W., and Keller M. J. (1988) A high-efficiency HeLa cell nuclear transcription extract.DNA 7, 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Sierra F. (1990)A Laboratory Guide to In Vitro Transcription. Birkhauser, Basel, Boston.

    Google Scholar 

  • Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., and Rothman J. E. (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of the synaptic vesicle docking, activation and fusion.Cell 75, 409–418.

    Article  PubMed  Google Scholar 

  • Struhl K. (1991) Mechanisms for diversity in gene expression patterns.Neuron 7, 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Südhof T. C. (1995) Synaptic vesicle cycle: a cascade of protein-protein interactions.Nature 375, 645–653.

    Article  PubMed  Google Scholar 

  • Wood J. N., Bevan S. J., Coote P., Darn P., Hogan P., Latchman D. S., Morrison C., Rougon G., Thevenian M., and Wheatley S. C. (1990) Novel cell lines display properties of nociceptive sensory neurons.Proc. R. Soc. Lond. Ser. B Biol. Sci. 241, 187–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabinin, A.E., Sato, T.N., Morris, P.J. et al. Immediate upstream promoter regions required for neurospecific expression of SNAP-25. J Mol Neurosci 6, 201–210 (1995). https://doi.org/10.1007/BF02736765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736765

Index Entries

Navigation