Skip to main content
Log in

Internal carburization and carbide precipitation in Fe-Ni-Cr alloy tubing retired from ethylene pyrolysis service

  • Section I: Basic And Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The events leading to the failure of an alloy grade HP Nb ethylene pyrolysis heater tubing were examined. X-ray maps indicated that a complex oxide coating, which inhibits carbon (C) diffusion, forms on the process side of the tubing during service. Phase equilibria studies predict that even without process C diffusion, metal carbides will precipitate out of the face centered cubic (FCC_Al) matrix. It was estimated that a 6 mm thick tube operating at 1100 °C would completely carburize in two years if the protective coating is damaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Sorrell, “Industrial Materials for the Future,” report I-XAM-778, U.S. Department of Energy, 2001

  2. A.K.K. Lee and A.M. Aitani, Saudi Ethylene Plants Move Toward More Feed Flexibility,Oil Gas J., 1990,88(Sept 10), p 60–63

    Google Scholar 

  3. K.W. Otto, Olefin Capacity Surge Will Tighten Feedstock Supplies,Oil Gas J., 1989,3, p 35–39

    Google Scholar 

  4. S. Field, Ethylene Profitability Trends,Hydrocarbon Process., 1990,69, p 47–49

    Google Scholar 

  5. L.L. Crynes and B.L. Crynes, Coke Formation on Polished and Unpolished Incoloy 800 Coupons during Pyrolysis of Light Hydrocarbons,Ind. Eng. Chem. Res., 1987,26, p 2139–2144

    Article  Google Scholar 

  6. D.L. Trimm, Fundamental Aspects of the Formation and Gasification of Coke,Pyrolysis: Theory & Industrial Practice, L.F. Albright, B.L. Crynes, and W.H. Corcoran, Ed., Academic Press, 1983, Chapter 9, p 203–232

  7. L.F. Albright and J.C. Marek, Mechanistic Model for Formation of Coke in Pyrolysis Units Producing Ethylene,Ind. Eng. Chem. Res., 1988,27, p 755–759

    Article  Google Scholar 

  8. K.M. Sundaram and G.F. Froment, Kinetics of Coke Deposition in the Thermal Cracking of Propane,Chem. Eng. Sci., 1979,34, p 635–644

    Article  Google Scholar 

  9. K.Y.G. Chan, F. Inal, and S. Senkan, Suppression of Coke Formation in the Steam Cracking of Alkanes: Ethane and Propane,Ind. Eng. Chem. Res., 1998,37, p 901–907

    Article  Google Scholar 

  10. M.W. Mucek, Laboratory Detection of Degree of Carburization in Ethylene Pyrolysis Furnace Tubing,Mater. Perform., 1983,9, p 25–28

    Google Scholar 

  11. G.L. Swales, Materials Selection Consideration for Petrochemical Furnace Tubes,Rev. Int. Hautes Temp. Refract., 1976,13, p 146–159

    Google Scholar 

  12. K.M. Sundaram and G.F. Froment, Kinetics of Coke Deposition in the Thermal Cracking of Propane,Chem. Eng. Sci., 1979,34, p 635–644

    Article  Google Scholar 

  13. K.M. Sundaram, P.S. Van Damme, and G.F. Froment, Coke Deposition in the Thermal Cracking of Ethane,AlChE J., 1981,27(6), p 946–951

    Google Scholar 

  14. H.J. Grabke and D. Jakobi, High Temperature Corrosion of Cracking Tubes,Mater. Corros., 2002,53, p 494–499

    Article  Google Scholar 

  15. S. Ibarra, Materials of Construction in Ethylene Pyrolysis-Heater Service,Pyrolysis: Theory & Industrial Practice, L.F. Albright, B.L. Crynes, and W.H. Corcoran, Ed., Academic Press, 1983, p 427–436

  16. Z. Renjun,Fundamentals of Pyrolysis in Petrochemistry and Technology, CRC Press, Boca Raton, 1993

    Google Scholar 

  17. K.G. Burns, D.J. Ciarella, C.T. Rowe, J.L. Sigmon, Chemicals Increase Ethylene Plant Efficiency,Hydrocarbon Process., 1991,70, p 83–87

    Google Scholar 

  18. D.T. Wickham, J. Engel, and M.E. Karpuk, “Methods for Suppression of Filamentous Coke Formation,” U.S. Patent 6,482,311, November 19, 2002

  19. Z. Renjun, L. Qiangkun, L. Huicai, and N. Fenghui, Investigation of Coke Deposition during the Pyrolysis of Hydrocarbon,Ind. Eng. Chem. Res., 1987,26, p 2528–2532

    Article  Google Scholar 

  20. D.L. Trimm, A. Holmen, and O. Lindvag, Coke Formation During Cracking of Hydrocarbons: I. The Effect of Presulphiding on Coke Formation on a Nickel- Chromium-Iron Alloy Under Steam Cracking Conditions,J. Chem. Technol. Biotechnol., 1981,31, p 311–316

    Article  Google Scholar 

  21. L.F. Albright and J.C. Marek, Coke Formation During Pyrolysis: Roles of Residence Time, Reactor Geometry and Time of Operation,Ind. Eng. Chem. Res., 1988,27, p 743–751

    Article  Google Scholar 

  22. P.R.S. Jackson, D.L. Trimm, and D.J. Young, The Coking Kinetics of Heat Resistant Austenitic Steels in Hydrogen-Propylene Atmospheres,J. Mater. Sci., 1986,21, p 3125–3134

    Article  ADS  Google Scholar 

  23. D.E. Brown, J.T.K. Clark, J.J. McCarroll, and M.C. Sims, German Patent 2,613,787, October 21, 1976

  24. P.R.S. Jackson, D.J. Young, and D.L. Trimm, Coke Deposition on and Removal from Metals and Heat-Resistant Alloys Under Steam-Cracking Conditions,J. Mater. Sci., 1986,21, p 4376–4384

    Article  ADS  Google Scholar 

  25. F. Ropital, A. Sugier, and M. Bisiaux, Etude De La Restauration Des Caracteristiques De Tubes De Four De Vapocraquage En Manaurite 36 XS,Rev. Inst. Fr. Pet., 1989,44(1), p 91–100

    Google Scholar 

  26. J.J. Jones,Cast Manifolds, Collectors and Transfer Lines, APV Paramount Ltd., England, 1988

  27. L. Hoglund,Thermo-Calc: Foundation of Computational Thermodynamics, Royal Institute of Technology, Stockholm, Sweden, Stockholm, Sweden

  28. J.I. Goldstein and A.E. Moran, Diffusion Modeling of the Carburization Process,Metall. Trans. A, 1978,9a, p 1515–1525

    ADS  Google Scholar 

  29. A. Schnaas and H.J. Grabke, Changes in Material Properties of Austenitic CrNiFe-Alloys by Carburization,Werkst. Korros., 1978,29, p 635–644

    Article  Google Scholar 

  30. K. Ledjeff, A. Rahmel, and M. Schorr, Oxidation and Carburization of High Alloyed Materials for Cracking Tubes-Part 1: The Oxidation Behavior in Air,Werkst. Korros., 1979,30, p 767–784

    Article  Google Scholar 

  31. K. Ledjeff, A. Rahmel, and M. Schorr, Oxidation and Carburization of High Alloyed Materials for Cracking Tubes-Part 2: The Carburization Behavior in Oxygen and Carbon Containing Atmospheres with High Carbon Activity,Werkst. Korros., 1980,31, p 83–97

    Article  Google Scholar 

  32. H.J. Grabke, K. Ohla, J. Peters, and I. Wolf, Radiotracer Studies of Carbon Permeation through Oxide Scales on Commercial High Temperature Alloys and Model Alloys,Werkst. Korros., 1983,34, p 495–500

    Article  Google Scholar 

  33. I. Wolf and H.J. Grabke, A Study on the Carbon Solubility and Distribution of Oxides,Solid State Commun., 1985,54, p 5–10

    Article  ADS  Google Scholar 

  34. H.J. Grabke and I. Wolf, Carburization and Oxidation,Mater. Sci. Eng., 1987,87, p 23–33

    Article  Google Scholar 

  35. I. Wolf, H.J. Grabke, and H.P. Schmidt, Carbon Transport Through Oxide Scales on Fe-Cr Alloys,Oxid. Met., 1988,29, p 289–306

    Article  Google Scholar 

  36. H.J. Grabke and A. Schnaas, W. Betteridge, et al. Ed.,Review on High Temperature Gaseous Corrosion and Mechanical Performance in Carburizing and Oxidizing Environments, Alloy 800, North-Holland, Amsterdam, 1978, p 195–211

  37. J. Hemptenmacher and H.J. Grabke, Effects of Small Alloying Additions of Niobium or Cerium on the Corrosion and Creep of Incoloy 800 in CO-H2O-H2-Atmospheres,Werkst. Korros., 1983,34, p 333–340

    Google Scholar 

  38. J. Hemptenmacher, G. Sauthoff, and H.J. Grabke, Effects of Carburization of the Creep Behavior of a FeNiCr-High Temperature Alloy,Werkst. Korros., 1984,35, p 247–253

    Article  Google Scholar 

  39. L.C. Brown and J.S. Kirkaldy, Carbon Diffusion in Dilute Ternary Austenites,Trans. TMS-AIME, 1964,230, p 223–226

    Google Scholar 

  40. K. Bongartz, D.F. Lupton, and H. Schuster, A Model to Predict Carburization Profiles in High Temperature Alloys,Metall. Trans. A, 1980,11, p 1883–1893

    Article  Google Scholar 

  41. M. Zhu, Q. Xu, and J. Zhang, Numerical Simulation of Reaction-Diffusion During Carburization of HK40 Steel,J. Mater. Sci. Technol., 2003,19(4), p 327–330

    Google Scholar 

  42. N. Saunders and A.P. Miodownik,CALPHAD: A Comprehensive Guide, Cambridge, 1998

  43. I. Ansara and M.H. Rand, The Industrial Use of Thermodynamical Data,Thermodynamic Calculations in C-Cr-Fe-Ni System, T.I. Barry, Ed., Chemical Society, London, 1980, p 246–257

    Google Scholar 

  44. H.-J. Christ, Experimental Characterization and Computer-Based Description of the Carburization Behavior of the Austenitic Stainless Steel AISI 304L,Mater. Corros., 1998,49, p 258–265

    Article  Google Scholar 

  45. G.M. Smith, D.J. Young, and D.L. Trimm, Carburization Kinetics of Heat Resistant Steels,Oxid. Met., 1982,18, p 229–243

    Article  Google Scholar 

  46. Y. Nishiyama, N. Otsuka, and T. Nishizawa, Carburization Resistance of Austenitic Alloys in CH4-CO2-H2 Gas Mixtures at Elevated Temperatures,Corrosion, 2003,59, p 688–700

    Article  Google Scholar 

  47. H.J. Grabke, Corrosion of Alloy 600 in a Carburization Furnace,Mater. Corros., 2001,52, p 546–551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, A., Anwar, M., Montero, K. et al. Internal carburization and carbide precipitation in Fe-Ni-Cr alloy tubing retired from ethylene pyrolysis service. JPED 27, 684–690 (2006). https://doi.org/10.1007/BF02736573

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736573

Keywords

Navigation