Skip to main content

Phytoplankton reference communities for Chesapeake Bay and its tidal tributaries

Abstract

Phytoplankton reference communities for Chesapeake Bay were quantified from least-impaired water quality conditions using commonly measured parameters and indicators derived from measured parameters. A binning approach was developed to classify water quality. Least-impaired conditions had relatively high water column transparency and low concentrations of dissolved inorganic nitrogen and orthophosphate. Reference communities in all seasons and salinity zones are characterized by consistently low values of chlorophylla and pheophytin coupled with relative stable proportions of the phytoplankton taxonomic groups and low biomasses of key bloom-forming species. Chlorophyll cell content was lower and less variable and average cell size and seasonal picophytoplankton biomass tended to be greater in the mesohaline and polyhaline reference communities as compared to the impaired communities. Biomass concentrations of the nano-micro phytoplankton size fractions (2–200 μm) in 12 of the 16 season-specific and salinity-specific reference communities were the same or higher than those in impaired habitat conditions, suggesting that nutrient reductions will not decrease the quantity of edible phytoplankton food available to large consumers. High (bloom) and low (bust) biomass events within the impaired phytoplankton communities showed strikingly different chlorophyll cell content and turnover rates. Freshwater flow had little effect on phytoplankton responses to water quality condition in most of the estuary. Improved water column transparency, or clarity, through the reduction of suspended sediments will be particularly important in attaining the reference communities. Significant nitrogen load reductions are also required.

This is a preview of subscription content, access via your institution.

Literature Cited

  • Alden, III,R. W. andE. S. Perry. 1997. Presenting Measurements of Status: Report to the Chesapeake Bay Program Monitoring Subcommittee's Data Analysis Workgroup. Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • Bennett, J. P., J. W. Woodward, andD. J. Shultz. 1986. Effect of discharge on the chlorophylla distribution in the tidally-influenced Potomac River.Estuaries 9:250–260.

    Article  CAS  Google Scholar 

  • Boicourt, W. C., M. Kuzmić, andT. S. Hopkins. 1999. The inland sea: Circulation of Chesapeake Bay and the Northern Adriatic, p. 81–130.In T. C. Malone, A. Malej, L. W. Harding. Jr., N. Smodlaka, and R. E. Turner (ed.), Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. Coastal and Estuarine Studies 55. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.

    Article  CAS  Google Scholar 

  • Buchanan, C. (ed.). 2000. The 1998–1999 Split Sample Study for Chesapeake Bay Program Phytoplankton, Microzooplankton and Mesozooplankton Monitoring Components. Prepared for the U.S. Environmental Protection Agency, Chesapeake Bay Program by the Interstate Commission on the Potomac River Basin, Report 00-3. Rockville, Maryland.

  • Chesapeake 2000Agreement. Chesapeake Bay Program Office, 410 Severn Avenue, Annapolis, Maryland 21403, http:// www.chesapeakebay.net/pubs/chesapeake2000agreement. pdf.

  • Chesapeake Bay Program. 1999. Targeting Toxics: A Characterization Report; A Tool for Directing Management and Monitoring Actions in the Chesapeake Bay's Tidal Rivers. Prepared by the Regional Focus Workgroup of the Chesapeake Bay Program Toxics Subcommittee, http://www. chesapeakebay.net/.

  • Dauer, D. M., J. A. Ranasinghe, andS. B. Weisberg. 2000. Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay.Estuaries 23:80–96.

    Article  Google Scholar 

  • Dauer, D. M., A. J. Rodi, Jr., andJ. A. Ranasinghe. 1992. Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay.Estuaries 15:384–391.

    Article  CAS  Google Scholar 

  • Day, Jr.,J. W., C. A. S. Hall, W. M. Kemp, andA. Yáňez-Arancibia. 1989. Estuarine Ecology. John Wiley and Sons, New York.

    Google Scholar 

  • Fisher, T. R. and A. B. Gustafson. 2003. Nutrient-addition bioassays in Chesapeake Bay to assess resources limiting algal growth. Progress report: August 1990–December 2002. Prepared for Maryland Department of Natural Resources, Chesapeake Bay Water Quality Monitoring Program, by University of Maryland Horn Point Laboratory, Cambridge, Maryland.

  • Fisher, T. R., A. B. Gustafson, G. M. Radcliffe, K. L. Sundberg, andJ. C. Stevenson. 2003. A long-term record of photosynthetically available radiation (PAR) and total solar energy at 38.6°N, 78.2°W.Estuaries 26:1450–1460.

    CAS  Article  Google Scholar 

  • Fisher, T. R., A. B. Gustafson, K. Sellner, R. Lacouture, L. W. Haas, R. L. Wetzel, R. Magnien, D. Everitt, B. Michaels, andR. Karrh. 1999. Spatial and temporal variation of resource limitation in Chesapeake Bay.Marine Biology 133:763–778.

    Article  Google Scholar 

  • Fogg, G. E.. 1965. Algal Cultures and Phytoplankton Ecology. University of Wisconsin Press, Madison, Wisconsin.

    Google Scholar 

  • Haas, L. W. and R. L. Wetzel. 1993. Nutrient limitation in the Chesapeake Bay: Nutrient bioassays in the Virginia Bay system Final report to Virginia Coastal Resources Management Program, Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, Virginia.

  • Harding, Jr.,L. W., D. Degobbis, andR. Precall. 1999. Production and fate of phytoplankton: Annual cycles and interannual variability, p. 131–172.In T. C. Malone, A. Malej, L. W. Harding, Jr., N. Smodlaka, and R. E. Turner (eds.), Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. Coastal and Estuarine Studies 55. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Harding, Jr.L. W. andE. S. Perry. 1997. Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950–1994.Marine Ecology Progress Series 157:39–52.

    Article  Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher, andT. Zohary. 1999. Biovolume calculations for pelagic and benthic microalgae.Journal of Phycology 35:403–424.

    Article  Google Scholar 

  • Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, New York.

    Google Scholar 

  • Lacouture, R. V. 1998. The procedure for estimating carbon content of phytoplankton. Report prepared for Maryland Department of Natural Resources by the Academy of Natural Sciences Estuarine Research Center, St. Leonard, Maryland.

  • Lacouture, R. V. 2001. Quality Assurance Documentation Plan for the Phytoplankton Component of the Chesapeake Bay Water Quality Monitoring Program. Prepared by the Academy of Natural Sciences Estuarine Research Center for the Maryland Department of Natural Resources http: //chesapeakebay.net/data/index.htm.

  • Lacouture, R. V., J. H. Sniezek, andK. G. Sellner. 1993. Level I Report: Maryland Chesapeake Bay Water Quality Monitoring Program-Phytoplankton and Microzooplankton Component. Academy of Natural Sciences, Philadelphia, Benedict Estuarine Research Laboratory, Benedict, Maryland.

    Google Scholar 

  • Lampert, W. andU. Sommer. 1997. Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Llanso, R. J. 1992. Effects of hypoxia on estuarine benthos: The lower Rappahannock River (Chesapeake Bay), a case study.Estuarine Coastal and Shelf Science 35:491–515.

    Article  Google Scholar 

  • MacKiernan, G. (ed.). 1987. Dissolved Oxygen in the Chesapeake Bay: Processes and Effects. Maryland Sea Grant UM-SG-TS-87-03. College Park, Maryland.

  • Malone, T. C., L. H. Cocker, S. E. Pike, andB. W. Wendler. 1986. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary.Marine Ecology Progress Series 48:235–249.

    Article  Google Scholar 

  • Marshall, H. G. 2001. Work/quality assurance project plan for monitoring phytoplankton, picoplankton and productivity in the lower Chesapeake Bay and tributaries. Prepared for the Virginia Department of Environmental Quality by Old Dominion University, http://chesapeakebay. net/data/index.htm.

  • Marshall, H. G. andR. W. Alden, III. 1990. A comparison of phytoplankton assemblages and environmental relationships in three estuarine rivers of the lower Chesapeake Bay.Estuaries 13:287–300.

    Article  CAS  Google Scholar 

  • Marshall, H. G. andR. V. Lacouture. 1986. Seasonal patterns of growth and composition for phytoplankton in the lower Chesapeake Bay.Estuarine Coastal and Shelf Science 23:115–130.

    Article  Google Scholar 

  • MathSoft, Inc. 2000. S-Plus 2000, Professional Release 2, Seattle, Washington.

  • Marshall, H. G. andK. K. Nesius. 1996. Phytoplankton composition in relation to primary production in Chesapeake Bay.Marine Biology 125:611–617.

    Google Scholar 

  • Molvaer, J., J. Knutzen, J. Magnusson, B. Rygg, J. Skei, and J. Sorensen. 1997. Environmental quality classification in fjords and coastal areas. Statens Forurensningstilsyn TA-1467, Norway.

  • Montagnes, D. J. S., J. A. Berges, P. J. Harrison, andF. J. R. Taylor. 1994. Estimating carbon, nitrogen, protein, and chlorophylla from volume in marine phytoplankton.Limnology and Oceanography 39:1044–1060.

    CAS  Article  Google Scholar 

  • Mullin, M. M., P. R. Sloan, andR. W. Eppley. 1966. Relationship between carbon content, cell volume, and are in phytoplankton.Limnology and Oceanography 11:307–311.

    Google Scholar 

  • National Research Council. 1992. Restoration of Aquatic Systems. National Academy Press, Washington, D.C.

    Google Scholar 

  • Newell, R. I. E. 1988. Ecological changes in Chesapeake Bay: Are they the result of overharvesting the American oyster,Crassostrea virginica? In Understanding the Estuary: Advances in Chesapeake Bay Research. Conference proceedings, March 1988, Publication number 129. Chesapeake Research Consortium, Gloucester Point, Virginia.

    Google Scholar 

  • Novotny, V. andH. Olem. 1994. Water Quality: Prevention, Identification and Management of Diffuse Pollution. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Officer, C. G., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development and significance.Science 23:22–27.

    Article  Google Scholar 

  • Olson, M. 1999. January 7, 1999 memo to Data Analysis Work Group entitled “Summary of Flow Characterization for 1985–1996”. Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • Olson, M. 2002. Benchmarks for nitrogen, phosphorus, chlorophyll and suspended solids in Chesapeake Bay. Chesapeake Bay Program Technical Report Series, Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • Ranasinghe, J. A., J. B. Frithsen, F. W. Kutz, J. F. Paul, D. E. Russell, R. A. Batiuk, J. L. Hyland, J. Scott, andD. M. Dauer. 2002. Application of two indices of benthic community condition in Chesapeake Bay.Environmetrics 13:499–511.

    Article  Google Scholar 

  • Ryding, S. O. andW. Rast. 1989. The Control of Eutrophication of Lakes and Reservoirs. Man and the Biosphere Series, Volume 1. Parthenon Publication Group. Park Ridge, New Jersey.

    Google Scholar 

  • Seliger, H. H., J. A. Boggs, andW. H. Biggley. 1985. Catastrophic anoxia in the Chesapeake Bay in 1984.Science 228: 70–73.

    Article  CAS  Google Scholar 

  • Sellner, K. G. andS. Fonda-Umani. 1999. Dinoflagellate blooms and mucilage production, p. 173–206.In T. C. Malone, A. Malej, L. W. Harding, Jr., N. Smodlaka, and R. E. Turner (eds.), Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea, Coastal and Estuarine Studies 55. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Sieburt, J. M., V. Smetacek, andJ. Lenz. 1978. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions.Limnology Oceanography 23:1256–1263.

    Article  Google Scholar 

  • Smayda, T. J. 1965. A quantitative analysis of the phytoplankton of the Gulf of Panama. II. On the relationship between C14 assimilation and the diatom standing crop.Inter-American. Tropical Tuna Commission Bulletin 9:465–531.

    Google Scholar 

  • Smith, V. H. 1998. Cultural eutrophication of inland, estuarine and coastal waters, p. 7–49.In M. L. Pace and P. M. Groffman (eds.), Successes, Limitation and Frontiers in Ecosystem Science. Springer-Verlag, New York.

    Google Scholar 

  • Sprague, L. A., M. J. Langland, S. E. Yochum, R. E. Edwards, J. D. Blomquist, S. W. Phillips, G. W. Shenk, and S. D. Preston. 2000. Factors Affecting Nutrient Trends in Major Rivers of the Chesapeake Bay Watershed. Water Resources Investigations Report 00-4218, Richmond, Virginia.

  • Strathmann, R. R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume.Limnology and Oceanography 12:411–418.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency. 2003. Ambient Water Quality Criteria for Dissolved Oxygen, Water Clarity and Chlorophylla for Chesapeake Bay and Tidal Tributaries. Office of Water. Environmental Protection Agency 903-R-03-002. Washington, D.C.

  • Vaughan, D. S., J. W. Smith, and E. H. Williams. 2002. Analyses on the status of the Atlantic menhaden stock. Report prepared the National Oceanographic and Atmospheric Administration Fisheries Division for the Atlantic States Marine Fisheries Commission, Menhaden Technical Committee. Beaufort, North Carolina.

  • Versar, Inc. and PBS&J, Inc. 2001. Chesapeake Bay Water Quality Monitoring Program 2000 Mesozooplankton Component. Prepared for Maryland Department of Natural Resources, Annapolis, Maryland.

  • Virginia Department of Environmental Quality. 2002. Chesapeake Bay and its Tributaries: Results of Monitoring Programs and Status of Resources. 2002 Biennial Report of the Secretary of Natural Resources to the Virginia General Assembly, Richmond, Virginia.

  • Weisberg, S. B., J. A. Ranasinghe, D. M. Dauer, L. C. Schaffner, R. J. Diaz, andJ. B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay.Estuaries 20:149–158.

    Article  Google Scholar 

  • Wetzel, R. G. 2001. Limnology—Lake and River Ecosystems. 3rd edition, Academic Press, New York.

    Google Scholar 

Sources of Unpublished Materials

  • Fisher, T. Personal Communication. Horn Point Laboratory. Center for Environmental Science, University of Maryland, 2020 Horn Point Road, Cambridge, Maryland 21613.

  • Ley, M. Personal Communication. Chesapeake Bay Program Quality Assurance Officer, U.S. Geological Survey, 410 Severn Avenue, Suite 109, Annapolis, Maryland 21403.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Buchanan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchanan, C., Lacouture, R.V., Marshall, H.G. et al. Phytoplankton reference communities for Chesapeake Bay and its tidal tributaries. Estuaries 28, 138–159 (2005). https://doi.org/10.1007/BF02732760

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732760

Keywords

  • Phytoplankton
  • Total Suspended Solid
  • Secchi Depth
  • Surface Mixed Layer
  • Habitat Category