Skip to main content
Log in

Convection-enhanced diffusion for random flows

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze the effective diffusivity of a passive scalar in a two-dimensional, steady, incompressible random flow that has mean zero and a stationary stream function. We show that in the limit of small diffusivity or large Peclet number, with convection dominating, there is substantial enhancement of the effective diffusivity. Our analysis is based on some new variational principles for convection diffusion problems and on some facts from continuum percolation theory, some of which are widely believed to be correct but have not been proved yet. We show in detail how the variational principles convert information about the geometry of the level lines of the random stream function into properties of the effective diffusivity and substantiate the result of Isichenko and Kalda that the effective diffusivity behaves likeɛ 3/13 when the molecular diffusivityɛ is small, assuming some percolation-theoretic facts. We also analyze the effective diffusivity for a special class of convective flows, random cellular flows, where the facts from percolation theory are well established and their use in the variational principles is more direct than for general random flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Alexander and S. A. Molchanov, “Percolation of Level Sets for Two-dimensional Random Fields with Lattice Symmetry,”J. Stat. Phys. 77:627–643, no. 3–4 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. M. Avellaneda and A. J. Majda, “An Integral Representation and Bounds on the Effective Diffusivity in Passive Advection by Laminar and Turbulent Flows,”Commun. Math. Phys. 138:339–391 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Bensoussan, J. L. Lions and G. C. Papanicolaou, “Asymptotic Analysis for Periodic Structures,” North-Holland, Amsterdam (1978).

    MATH  Google Scholar 

  4. L. Berlyand and K. Golden, “Exact Results for the Effective Conductivity of a Continuum Percolation Model,”Phys. Rev. B 50:2114–2117 (1994).

    Article  ADS  Google Scholar 

  5. A. V. Cherkaev and L. V. Gibiansky, “Variational Principles for Complex Conductivity, Viscoelasticity and Similar Problems in Media with Complex Moduli,”J. Math. Phys. 35:1, 127–145 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. S. Childress, “Alpha-Effect in Flux Ropes and Sheepts,”Phys. Earth Planet Inter. 20:172–180 (1979).

    Article  ADS  Google Scholar 

  7. S. Childress and A. M. Soward, “Scalar Transport and Alpha-Effect for a Family of Cat’s-Eye Flows,”J. Fluid Mech. 205:99–133 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J. L. Doob, “Stochastic Processes,” John Wiley & Sons, Inc. 1953.

  9. A. Fannjiang and G. C. Papanicolaou, “Convection Enhanced Diffusion for Periodic Flows,”SIAM J. Appl. Math. 54:2, 333–408 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Fannjiang and G. C. Papanicolaou, “Diffusion in Turbulence,”Prob. Theory and Rel. Fields 105:279–334 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Fannjiang and T. Komorowski, “An Martingale Approach to Homogenization of Unbounded Random Flows,” to appear inAnnals of Probability.

  12. K. Golden and G. C. Papanicolaou, “Bounds for Effective Parameters of Heterogeneous Media by Analytic Continuation,”Commun. Math. Phys. 90:473–491 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  13. M. B. Isichenko, “Percolation, Statistical Topography, and Transport in Random Media,”Rev. Mod. Phys. 64:4, 961–1043 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  14. A. V. Gruznov, M. B. Isichenko, and J. Kalda, “Two-dimensional Turbulent Diffusion,”Sov. Phys. JETP 70:263–269 (1990).

    Google Scholar 

  15. M. B. Isichenko and J. Kalda, “Statistical Topography II. 2-D Transport of a Passive Scalar,”J. Nonlinear Sci. 1:375–396 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. M. Kozlov, “The Method of Averaging and Walks in Inhomogeneous Environments,”Russian Math. Surveys 40:2, 73–145 (1985).

    Article  ADS  MATH  Google Scholar 

  17. S. M. Kozlov, “Geometric Aspects of Averaging,”Russian Math. Surveys 44:2, 91–144 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. P. M. den Nijs, “A Relation Between the Temperature Exponents of the Eight-Vertex andq-State Potts Model,”J. Phys. A12:1857 (1979).

    ADS  Google Scholar 

  19. G. C. Papanicolaou and S. Varadhan, “Boundary Value Problems with Rapidly Oscillating Random Coefficients,”Colloquia Mathematica Sicietatis Janos Bolyai 27, Random Fields, Esztergom (Hungary) 1979, Amsterdam, North-Holland, 1982, pp. 835–873.

    Google Scholar 

  20. M. N. Rosenbluth, H. L. Berk, I. Doxas, and W. Horton, “Effective Diffusion in Laminar Convective Flows,”Phys. Fluids 30:2636–2647 (1987).

    Article  ADS  MATH  Google Scholar 

  21. B. Shraiman, “Diffusive Transport in a Rayleigh-Benard Convection Cell,”Phys. Rev. A 36:261 (1987).

    Article  ADS  Google Scholar 

  22. H. Saleur and B. Duplantier, “Exact Determination of the Percolation Hull Exponent in Two Dimension,”Phys. Rev. Lett. 51:2048 (1985).

    Google Scholar 

  23. A. Weinrib, “Percolation Threshold of a Two-Dimensional Continuum System,”Phys. Rev. B 26:1352 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  24. R. M. Ziff, “Test of Scaling Exponents for Percolation-Cluster Perimeters,”Phys. Rev. Lett. 56:545 (1986).

    Article  ADS  Google Scholar 

  25. J. M. Ziman, “Models of Disorder,” Cambridge University, New York (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Fannjiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fannjiang, A., Papanicolaou, G. Convection-enhanced diffusion for random flows. J Stat Phys 88, 1033–1076 (1997). https://doi.org/10.1007/BF02732425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732425

Key Words

Navigation