Skip to main content
Log in

Evidence suggesting a need for fundamental changes in scattering theory obtained from a comparison of the data of the scatterings π++p → π++p,4He(p, p)4He,3He(p, p)3He,2H(p, p)2H

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

When the data sets ofk 2 dσ/dΩ(ϑ) in4He(p, p)4He and π++p → → π++p are compared at c.m. momenta related byp π =4p 4, wherep 4 is the momentum of4He(p, p)4He andp π is the momentum of the π+p scattering, a correlation between them is found over most of thep π range from 125MeV/c to 1125MeV/c. This correlation is most marked in the region of the lowest energy resonance for both scatterings, which is in the2 P 3/2 phase shift for both. In that region, it takes the form of approximate equality of peak locations and peak widths at large back angles and, for a sizeable part of the region and a large range of angles, of equality of the quantities. Above this resonance region the correlation is less direct. In the low-energy resonance region there is also a strong resemblance of the data set of3He(p, p)3He to that of the p-4He scattering when they are compared at ratios of momenta given by 4p 4=3p 3, wherep 3 is the momentum of the p-3He scattering. A less pronounced resemblance is also seen in this region for2H(p, p)2H and the others when the momenta are related by 4p 4=2p 2, wherep 2 is the momentum of the p-2H scattering. The prescription for relating the momenta for all the comparisons is summarized in the formulaN i p i =N j p j , wherei andj refer to the two scatterings being compared andN is an integer equal toA for the proton-nucleus scatterings and 1 for π+p scattering. It is possible, of course, that all of this is simply fortuitous, but the simplicity of the prescription for relating the momenta along with the remarkable degree and extent of the correlations among the data sets suggests the possibility of a physically significant pattern. If such a pattern does indeed exist, fundamental changes in the theories pertaining to these scatterings, including the theory of resonance scattering, will be needed. In particular, some form of relation between the electromagnetic interaction and the strong nuclear interaction would seem to be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Freier, E. Lampi, W. Sleator andJ. H. Williams:Phys. Rev.,75, 1345 (1949).

    Article  ADS  Google Scholar 

  2. A. C. L. Barnard, C. M. Jones andJ. L. Weil:Nucl. Phys.,50, 604 (1964).

    Article  Google Scholar 

  3. P. D. Miller andG. C. Phillips:Phys. Rev.,112, 2043 (1958).

    Article  ADS  Google Scholar 

  4. L. Kraus andI. Linck:Nucl. Phys. A,224, 45 (1974).

    Article  ADS  Google Scholar 

  5. L. Kraus: private communication.

  6. D. C. Dodder, G. M. Hale, N. Jarmie, J. H. Jett, P. W. Keaton jr.,R. A. Nisley andK. Witte:Phys. Rev. C,15, 518 (1977).

    Article  ADS  Google Scholar 

  7. K. W. Brockman:Phys. Rev.,108, 1000 (1957).

    Article  ADS  Google Scholar 

  8. K. W. Brockman:Phys. Rev.,102, 391 (1956).

    Article  ADS  Google Scholar 

  9. P. W. Allison andR. Smythe:Nucl. Phys. A,121, 97 (1968).

    Article  ADS  Google Scholar 

  10. P. Darriulat, D. Garreta, A. Tarrats andJ. Testoni:Nucl. Phys. A,108, 316 (1968).

    Article  ADS  Google Scholar 

  11. A. D. Bacher, G. R. Plattner, H. E. Conzett, D. J. Clark, H. Grunder andW. F. Tivol:Phys. Rev. C,5, 1147 (1972).

    Article  ADS  Google Scholar 

  12. A. Houdayer, N. E. Davison, S. A. Elbakr, A. M. Sourkes, W. T. H. Van Oers andA. D. Bacher:Phys. Rev. C,18, 1985 (1978).

    Article  ADS  Google Scholar 

  13. W. T. H. Van Oers: private communication.

  14. B. W. Davies, M. K. Craddock, R. C. Hanna, Z. J. Moroz andL. P. Robertson:Nucl. Phys. A,97, 241 (1967).

    Article  ADS  Google Scholar 

  15. K. Imai, K. Hatanaka, H. Shimizu, N. Tamura, K. Egawa, K. Nisimura, T. Saito, H. Sato andY. Wakuta:Nucl. Phys. A,325, 397 (1979).

    Article  ADS  Google Scholar 

  16. J. Sanada:J. Phys. Soc. Jpn.,14, 1463 (1959).

    Article  ADS  Google Scholar 

  17. L. G. Votta, P. G. Roos, N. S. Chant andR. Woody III:Phys. Rev. C,10, 520 (1974).

    Article  ADS  Google Scholar 

  18. N. P. Goldstein, A. Held andD. G. Stairs:Can. J. Phys.,48, 2629 (1970).

    Article  ADS  Google Scholar 

  19. V. Comparat, R. Frascaria, N. Fujiwara, N. Marty, M. Morlet, P. G. Roos andA. Willis:Phys. Rev. C,12, 251 (1975).

    Article  ADS  Google Scholar 

  20. T. A. Tombrello, C. M. Jones, G. C. Phillips andJ. L. Weil:Nucl. Phys.,39, 541 (1962).

    Article  Google Scholar 

  21. D. G. McDonald, W. Haeberli andL. W. Morrow:Phys. Rev. B,133, 1178 (1964).

    Article  ADS  Google Scholar 

  22. T. B. Clegg, A. C. L. Barnard, J. B. Swint andJ. L. Weil:Nucl. Phys.,50, 621 (1964).

    Article  Google Scholar 

  23. R. L. Hutson, N. Jarmie, J. L. Detch jr. andJ. H. Jett:Phys. Rev. C,4, 17 (1971).

    Article  ADS  Google Scholar 

  24. J. R. Morales, T. A. Cahill, D. J. Shadoan andH. Willmes:Phys. Rev. C,11, 1905 (1975).

    Article  ADS  Google Scholar 

  25. J. R. Morales-Pena: Ph. D. dissertation, University of California, Davis, 1970; available from University Microfilms, Ann Arbor, Michigan, U.S.A.

    Google Scholar 

  26. R. H. Ware, W. R. Smythe andP. D. Ingalls:Nucl. Phys. A,242, 309 (1975).

    Article  ADS  Google Scholar 

  27. C. C. Kim, S. M. Bunch, D. W. Devins andH. H. Forster:Nucl. Phys.,58, 32 (1964).

    Article  Google Scholar 

  28. B. T. Murdoch, D. K. Hasell, A. M. Sourkes, W. T. H. Van Oers andP. J. T. Verheijen:Phys. Rev. C,29, 2001 (1984).

    Article  ADS  Google Scholar 

  29. F. Ajzenberg-Selove:Nucl. Phys. A,413, 1 (1984).

    Article  ADS  Google Scholar 

  30. L. Brown, W. Haeberli andW. Trächslin:Nucl. Phys. A,90, 339 (1967).

    Article  ADS  Google Scholar 

  31. Th. Stammbach andR. L. Walter:Nucl. Phys. A,180, 225 (1972).

    Article  ADS  Google Scholar 

  32. R. A. Arndt, D. D. Long andL. D. Roper:Nucl. Phys. A,209, 429 (1973).

    Article  ADS  Google Scholar 

  33. S. Fiarman andW. E. Meyerhof:Nucl. Phys. A,206, 1 (1973).

    Article  ADS  Google Scholar 

  34. G. Szaloky andF. Seiler:Nucl. Phys. A,303, 57 (1978).

    Article  ADS  Google Scholar 

  35. D. C. Kocher andT. B. Clegg:Nucl. Phys. A,132, 455 (1969).

    Article  ADS  Google Scholar 

  36. W. T. H. Van Oers andK. W. Brockman jr.:Nucl. Phys.,21, 189 (1960).

    Article  Google Scholar 

  37. S. Kikuchi, J. Sanada, S. Suwa, I. Hayashi, K. Nisimura andK. Fukunaga:J. Phys. Soc. Jpn.,15, 9 (1960).

    Article  ADS  Google Scholar 

  38. T. A. Cahill, J. Greenwood, H. Willmes andD. J. Shadoan:Phys. Rev. C,4, 1499 (1971).

    Article  ADS  Google Scholar 

  39. G. E. Bixby andR. Smythe:Phys. Rev.,166, 946 (1968).

    Article  ADS  Google Scholar 

  40. J. Arvieux:Nucl. Phys. A,221, 253 (1974).

    Article  ADS  Google Scholar 

  41. S. Fiarman andS. S. Hanna:Nucl. Phys. A,251, 1 (1975).

    Article  ADS  Google Scholar 

  42. Particle Data Group:Phys. Lett. B,170, S-1 (1986).

  43. J. R. Carter, D. V. Bugg andA. A. Carter:Nucl. Phys. B,58, 378 (1973).

    Article  ADS  Google Scholar 

  44. C. Amsler, L. Dubal, G. H. Eaton, R. Frosch, S. Mango, F. Pozar andU. Rohrer:Lett. Nuovo Cimento,15, 209 (1976).

    Article  Google Scholar 

  45. P. Y. Bertin, B. Coupat, A. Hivernat, D. B. Isabelle, J. Duclos, A. Gerard, J. Miller, J. Morgenstern, J. Picard, P. Vernin andR. Powers:Nucl. Phys. B,106, 341 (1976).

    ADS  Google Scholar 

  46. V. S. Zidell, R. A. Arndt andL. D. Roper:Phys. Rev. D,21, 1255 (1980).

    Article  ADS  Google Scholar 

  47. B. G. Ritchie, R. S. Moore, B. M. Preedom, G. Das, R. C. Minehart, K. Gotow, W. J. Burger andH. J. Ziock:Phys. Lett. B,125, 128 (1983).

    Article  ADS  Google Scholar 

  48. P. J. Bussey, J. R. Carter, D. R. Dance, D. V. Bugg, A. A. Carter andA. M. Smith:Nucl. Phys. B,58, 363 (1973).

    Article  ADS  Google Scholar 

  49. V. A. Gordeev, V. P. Koptev, S. P. Kruglov, L. A. Kuz’min, A. A. Kulbardis, Yu. A. Malov, S. M. Mikirtich’yants, I. I. Strakovsky andG. V. Scherbakov:Nucl. Phys. A,364, 408 (1981).

    Article  ADS  Google Scholar 

  50. P. M. Ogden, D. E. Hagge, J. A. Helland, M. Banner, J. F. Detoeuf andJ. Teiger:Phys. Rev. B,137, 1115 (1965).

    Article  ADS  Google Scholar 

  51. J. Ashkin, J. P. Blaser, F. Feiner andM. O. Stern:Phys. Rev.,101, 1149 (1956).

    Article  ADS  Google Scholar 

  52. J. Ashkin, J. P. Blaser, F. Feiner andM. O. Stern:Phys. Rev.,105, 724 (1957).

    Article  ADS  Google Scholar 

  53. R. E. Rothschild, T. Bowen, P. K. Caldwell, D. Davidson, E. W. Jenkins, R. M. Kalbach, D. V. Peterson andA. E. Pifer:Phys. Rev. D,5, 499 (1972).

    Article  ADS  Google Scholar 

  54. A. J. Lennox, J. A. Poirier, C. A. Rey, O. R. Sander, W. F. Baker, D. P. Eartly, K. P. Pretzl, S. M. Pruss, A. A. Wehmann andP. Koehler:Phys. Rev. D,11, 1777 (1975).

    Article  ADS  Google Scholar 

  55. R. E. Cutkosky, R. E. Hendrick, J. W. Alcock, Y. A. Chao, R. G. Lipes, J. C. Sandusky andR. L. Kelly:Phys. Rev. D,20, 2804 (1979).

    Article  ADS  Google Scholar 

  56. G. R. Plattner, A. D. Bacher andH. E. Conzett:Phys. Rev. C,5, 1158 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrow, L.W. Evidence suggesting a need for fundamental changes in scattering theory obtained from a comparison of the data of the scatterings π++p → π++p,4He(p, p)4He,3He(p, p)3He,2H(p, p)2H. Nuov Cim A 105, 1579–1600 (1992). https://doi.org/10.1007/BF02731072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02731072

PACS

PACS

PACS

Navigation