Skip to main content
Log in

The four-dimensional position operator, coherent states and representations of the conformal group

Четырехмерный оператор положения, когерентные состояния и представления конформной группы

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

It is shown that the representation space of the conformal groupSO 4,2 is the Bargmann-Segal space of coherent states |w μ › of the non-Hermitian position operator\(\bar w_\mu ^ + \). The states |w μ › are coherent in the usual sense of minimal uncertainty ofx μ andp μ . The real part of\(\bar w_\mu ^ + \) gives the Hermitian position operatorx μ . Both operators fulfil the canonical commutation relations and are covariant under the conformal group. The imaginary part of\(\bar w_\mu ^ + \) describes the dispersion of position. The metric operatorG connecting\(\bar w_\mu \) with its adjoint\(\bar w_\mu ^ + \) gives the scalar product for various representations of the conformal group.

Riassunto

Si dimostra che lo spazio delle rappresentazioni del gruppo conformeSU 4,2 è lo spazio di Bergmann-Segal degli stati coerenti |w μ › dell’operatore di posizione non hermitiano\(\bar w_\mu ^ + \). Gli stati |w μ › sono coerenti nel senso usuale di minima incertezza dix μ ep μ . La parte reale di\(\bar w_\mu ^ + \) dà l’operatore di posizione hermitianox μ . Entrambi gli operatori soddisfano le relazioni di commutazione canoniche e sono covarianti rispetto al gruppo conforme. La parte immaginaria di\(\bar w_\mu ^ + \) descrive la dispersione di posizione. L’operatore metricoG che connette\(\bar w_\mu \) col suo aggiunto\(\bar w_\mu ^ + \) dà il prodotto scalare per varie rappresentazioni del gruppo conforme.

Реэюме

Покаэывается, что пространство представления конформной группыSO 4,2 представляет пространство Баргмана-Сегала когерентных состояний |w μ › для незрмитова оператора положения\(\bar w_\mu ^ + \). Состояния |w μ › являются когетентными в обычном смысле для минимальной неопределенностиx μ иp μ . Вешественная часть\(\bar w_\mu ^ + \), определяет зрмитов оператор положенияx μ Оба оператора удовлетворяют каноническим соотнощениям коммутации и являются ковариантными относительно конформной группы. Мнимая часть\(\bar w_\mu ^ + \) описывает дисперсию положения. Метрический операторG, свяэываюший\(\bar w_\mu \) с сопряженным\(\bar w_\mu ^ + \), определяет скалярное проиэведение для раэличных представлений конформной группы.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. F. Gürsey andS. Orfanidis:Phys. Rev. D,7, 2414 (1973).

    Article  ADS  Google Scholar 

  2. H. Meschkowski:Hilbertsche Räume mit Kernfunktion (Berlin, 1962).

  3. J. R. Klauder andE. C. G. Sudarshan:Fundamentals of Quantum Optics (New York, N. Y., 1968).

  4. V. Bargmann:Comm. Pure Appl. Math.,14, 187 (1961);I. E. Segal:Illinois Journ. Math.,6, 500 (1962).

    Article  MathSciNet  Google Scholar 

  5. M. L. Graev:Dokl. Akad. Nauk SSSR,98, 517 (1954);Amer. Math. Soc. Transl.,66, 1 (1968).

    MATH  MathSciNet  Google Scholar 

  6. W. Rühl:Conformal Kinematics, Lectures presented at theFirst Symposium on Theoretical Physics (Teheran, 1973).

  7. W. Rühl:Comm. Math. Phys.,27, 53 (1972).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. V. Bargmann:Ann. Math.,48, 568 (1947).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. O. Barut andL. Girardello:Comm. Math. Phys.,21, 41 (1971).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. J. Kupsch, W. Rühl andB. C. Yunn:Ann. of Phys.,89, 115 (1975).

    Article  MATH  ADS  Google Scholar 

  11. W. Rühl:Comm. Math. Phys.,30, 287 (1973).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. We use antiholomorphic functions.

  13. Applying the Cayley transformation to eqs. (3.15)–(3.17) we obtain the generatorsJ, K, R expressed by the physical generators (4.10). The result has been obtained in another way in ref. (12).

    Article  MATH  ADS  Google Scholar 

  14. T. Yao:Journ. Math. Phys.,12, 315 (1971).

    Article  MATH  ADS  Google Scholar 

  15. I. Bars andF. Gürsey:Journ. Math. Phys.,13, 131 (1972).

    Article  MATH  ADS  Google Scholar 

  16. T. Yao:Journ. Math. Phys.,9, 1615 (1968).

    Article  MATH  ADS  Google Scholar 

  17. I. M. Gelfand, N. I. Graev andN. Y. Vilenkin:Generalized Functions, Vol.5, (New York, N. Y., 1964).

  18. I. M. Gelfand andG. E. Shilov:Generalized functions, Vol.1 (New York, N. Y., 1964).

  19. After our work had been completed we found that the caseG=1 has been obtained byLagu andLaue (17). This Hermitian position operator has been investigated also byAlmond (18). In this case (n=2) the representation of the conformal group is the extension of the irreducible representation of the Weyl group (19).

  20. S. Lagu andH. Laue:Nuovo Cimento,20 A, 217 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  21. D. J. Almond:Ann. Inst. Henri Poincaré,19, 105 (1973).

    Google Scholar 

  22. J. Mickelsson andJ. Niederle:Journ. Math. Phys.,13, 23 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  23. J. E. Johnson:Phys. Rev.,181, 1755 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  24. J. von Neumann:Ann. Math.,104, 570 (1931);H. J. Borchers:Comm. Math. Phys.,4, 315 (1967).

    Article  MATH  Google Scholar 

  25. So, it is a covariant generalization of the Newton-Wigner position operator. The operators (5.4), (5.5) and the states (5.6), (5.7) can be obtained axiomatically, similarly as byNewton andWigner (22), when we assume the conformal invariance and omit the orthogonality condition.

  26. T. D. Newton andE. P. Wigner:Rev. Mod. Phys.,21, 400 (1949).

    Article  MATH  ADS  Google Scholar 

  27. The non-Hermitian position operators and their possible physical interpretation have been proposed firstly in ref. (23).

    Article  MathSciNet  ADS  Google Scholar 

  28. A. J. Kalnay andB. P. Toledo:Nuovo Cimento,48 A, 997 (1967);J. A. Galardo, A. J. Kalnay, B. A. Stec andB. P. Toledo:Nuovo Cimento,48 A, 1008 (1967).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haba, Z. The four-dimensional position operator, coherent states and representations of the conformal group. Nuov Cim A 30, 567–588 (1975). https://doi.org/10.1007/BF02730487

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02730487

Navigation