Skip to main content
Log in

Modeling low mach number reacting flow with detailed chemistry and transport

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An efficient projection scheme is developed for the simulation of reacting flow with detailed kinetics and transport. The scheme is based on a zero-Mach-number formulation of the compressible conservation equations for an ideal gas mixture. It relies on Strang splitting of the discrete evolution equations, where diffusion is integrated in two half steps that are symmetrically distributed around a single stiff step for the reaction source terms. The diffusive half-step is integrated using an explicit single-step, multistage, Runge-Kutta-Chebyshev (RKC) method. The resulting construction is second-order convergent, and has superior efficiency due to the extended real-stability region of the RKC scheme. Two additional efficiency-enhancements are also explored, based on an extrapolation procedure for the transport coefficients and on the use of approximate Jacobian data evaluated on a coarse mesh. We demonstrate the construction in 1D and 2D flames, and examine consequences of splitting errors. By including the above enhancements, performance tests using 2D computations with a detailed C1C2 methane-air mechanism and a mixture-averaged transport model indicate that speedup factors of about 15 are achieved over the starting split-stiff scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majda, A., and Sethian, J. (1985).Comb. Sci. and Technology 42, 185–205.

    Article  Google Scholar 

  2. Turek, S. (1997).Comput. Methods Appl. Mech. Eng. 143, 271–288.

    Article  MATH  MathSciNet  Google Scholar 

  3. Gresho, P. M. (1990).Int. J. Numer. Meth. Fluids 11, 587–620.

    Article  MATH  MathSciNet  Google Scholar 

  4. Gresho, P. M. (1990).Int. J. Numer. Meth. Fluids 11, 621–659.

    Article  MATH  MathSciNet  Google Scholar 

  5. Patankar, S. V. (1980).Numerical Heat Transfer and Fluid Flow chapter 6 Hemisphere Pub. Corp., McGraw-Hill Co., New York.

    MATH  Google Scholar 

  6. Chorin, A. J. (1968).Math. Comput. 22, 745–762.

    Article  MATH  MathSciNet  Google Scholar 

  7. Chorin, A. J. (1969).Math. Comput. 23, 341–353.

    Article  MATH  MathSciNet  Google Scholar 

  8. Temam, R. (1969).Arch. Rat. Mech. Anal. 33, 377–385.

    Article  MATH  MathSciNet  Google Scholar 

  9. Kim, J., and Moin, P. (1985).J. Comput. Phys. 59, 308–323.

    Article  MATH  MathSciNet  Google Scholar 

  10. Brown, D. L., Cortez, R. and Minion, M. L. (2001).J. Comput. Phys. 168, 464–499.

    Article  MATH  MathSciNet  Google Scholar 

  11. Henriksen, M. O., and Holmen, J. (2002).J. Comput. Phys. 175, 438–453.

    Article  MATH  MathSciNet  Google Scholar 

  12. McMurtry, P. A., Jou, W.-H., Riley, J. J., and Metcalfe, R. W. (1986).AIAA J. 24(6), 962–970.

    Article  Google Scholar 

  13. Rutland, C., Ferziger, J. H., and Cantwell, B. J. (1989). Report TF-44, Thermosciences Div., Mech. Eng., Stanford University, Stanford, CA.

    Google Scholar 

  14. Rutland, C. J., and Ferziger, J. H. (1991).Combustion and Flame 84, 343–360.

    Article  Google Scholar 

  15. Najm, H. N. (1996). inTransport Phenomena in Combustion. Chan, S. (ed.), Vol. 2, Taylor and Francis, Wash. DC, pp. 921–932.

    Google Scholar 

  16. Najm, H. N., and Wyckoff, P. S. (1997).Combustion and Flame 110(1–2), 92–112.

    Article  Google Scholar 

  17. Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. (1998).J. Comput. Phys. 142, 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  18. Pember, R. B., Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Lai, M. (1994). Preprint UCRL-JC-118634, Lawrence Livermore National Laboratory, Livermore, CA.

    Google Scholar 

  19. Pember, R. B., Howell, L. H., Bell, J. B., Colella, P., Crutchfield, W. Y., Fiveland, W. A., and Jesse, J. P. (1997). Technical Report LBL-38551, Lawrence Berkeley National Laboratory, Berkeley, CA.

    Google Scholar 

  20. Karniadakis, G. E., Israeli, M., and Orzag, S. A. (1991).J. Comput. Phys. 97, 414.

    Article  MATH  MathSciNet  Google Scholar 

  21. Courant, R., Friedrichs, K. O., and Lewy, H. (1928)Mathematische Annalen,100, 32–74 (Translated to: On the Partial Difference Equations of Mathematical Physics, IBM J. Res. Dev., vol. 11, pp. 215–234, 1967).

    Article  MathSciNet  MATH  Google Scholar 

  22. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H. (1984).Computational Fluid Mechanics and Heat Transfer, Hemisphere Pub. Co., New York.

    MATH  Google Scholar 

  23. Najm, H. N., Wyckoff, P. S., and Knio, O. M. (1998).J. Comp. Phys.,143(2), 381–402.

    Article  MATH  MathSciNet  Google Scholar 

  24. Najm, H. N., Knio, O. M., Paul, P. H., and Wyckoff, P. S. (1998).Comb. Sci. Tech. 140(1–6), 369–403.

    Article  Google Scholar 

  25. Knio, O. M., Najm, H. N., and Wyckoff, P. S. (1999).J. Comp. Phys. 154, 428–467.

    Article  MATH  MathSciNet  Google Scholar 

  26. Hundsdorfer, W. H. (1996). Report NM-N9603, CWI, Amsterdam, http://info4u.cwi.nl.

    Google Scholar 

  27. Spee, E. J. (1995). inAir Pollution III H. P.et al., (ed.), Vol. 1, Comput. Mech. Publ., Southampton-Boston, pp. 319–326.

    Google Scholar 

  28. Verwer, J. G., Blom, J. G., Van Loon, M., and Spee, E. J. (1995).Atmos. Eviron. 30, 49–58.

    Article  Google Scholar 

  29. Hundsdorfer, W., and Verwer, J. G. (1995).App. Num. Math. 18, 191–199.

    Article  MATH  MathSciNet  Google Scholar 

  30. Spee, E. J., de Zeeuw, P. M., Verwer, J. G., Blom, J. G., and Hundsdorfer, W. H. (1996). Report NM-R9620, CWI, Amsterdam, http://info4u.cwi.nl.

    Google Scholar 

  31. Verwer, J. G., Spee, E. J., Blom, J. G., and Hundsdorfer, W. H. (1999).SIAM J. Sci. Comput. 20, 1456–1480.

    MATH  MathSciNet  Google Scholar 

  32. Spee, E. J., Verwer, J. G., de Zeeuw, P. M., Blom, J. G., and Hundsdorfer, W. (1998).Math. Comp. Simulation 48, 177–204.

    Article  Google Scholar 

  33. Khan, L. A., and Liu, P.L.-F. (1995).Comput. Methods Appl. Mech. Engrg. 127, 181–201.

    Article  MATH  MathSciNet  Google Scholar 

  34. Strang, G. (1968).SIAM J. Numer. Anal.,5(3), 506–517.

    Article  MATH  MathSciNet  Google Scholar 

  35. Burstein, S. Z., and Mirin, A. A. (1970).J. Comp. Phys. 5, 547–571.

    Article  MATH  MathSciNet  Google Scholar 

  36. Yoshida, H. (1990).Physics Letters A 150(5–7), 262–268.

    Article  MathSciNet  Google Scholar 

  37. Sheng, Q. (1989).IMA J. Numer. Anal. 9, 199–212.

    Article  MATH  MathSciNet  Google Scholar 

  38. Wright, J. P. (1998).J. Comp. Phys.,140, 421–431.

    Article  MATH  Google Scholar 

  39. Day, M. S., and Bell, J. B. (2000).Combust. Theory Modelling 4, 535–556.

    Article  MATH  Google Scholar 

  40. Kee, R. J., Rupley, F. M., and Miller, J. A. (1993). Sandia Report SAND89-8009B, Sandia National Labs., Livermore, CA.

    Google Scholar 

  41. Verwer, J. G. (1996).App. Num. Math. 22, 359–379.

    Article  MATH  MathSciNet  Google Scholar 

  42. Frenklach, M., Wang, H., Goldenberg, M., Smith, G. P., Golden, D. M., Bowman, C. T., Hanson, R. K., Gardiner, W. C., and Lissianski, V. (1995). Top. Rep. GRI-95/0058, GRI.

  43. Paul, Phillip H. (1997). Sandia Report SAND98-8203, Sandia National Laboratories, Albuquerque, New Mexico.

    Google Scholar 

  44. Paul, P., and Warnatz, J. (1998).Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, pp. 495–504.

  45. Van der Houwen, P. J., and Sommeijer, B. P. (1980).ZAMM 60, 479–485.

    Article  MATH  Google Scholar 

  46. Verwer, J. G. (1982).ZAMM 62, 561–563.

    Article  MATH  MathSciNet  Google Scholar 

  47. Verwer, J. G., Hundsdorfer, W. H., and Sommeijer, B. P. (1990).Numer. Math. 57, 157–178.

    Article  MATH  MathSciNet  Google Scholar 

  48. Sommeijer, B. P., Shampine, L. F., and Verwer, J. G. (1997).J. Comput. Appl. Math. 88, 315–326.

    Article  MathSciNet  Google Scholar 

  49. Van der Houwen, P. J. (1972).Numer. Math. 20, 149–164.

    Article  MATH  MathSciNet  Google Scholar 

  50. Van der Houwen, P. J. (1977).Construction of integration formulas for initial value problems, North-Holland, Amsterdam-New York.

    MATH  Google Scholar 

  51. Verwer, J. G. (1977).J. Comp. App. Math. 3(3), 155–166.

    Article  MATH  MathSciNet  Google Scholar 

  52. Verwer, J. G. (1980).ACM Trans. on Math. Software 6(2), 188–205.

    Article  MATH  Google Scholar 

  53. Medovikov, A. A. (1996) InNumerical Analysis and Its Applications, Vulkov, L., Waśniewski, J., and Yalamov, P., (eds.), Springer, Berlin, pp. 327–334, Lecture Notes in Computer Science 1196. Goos, G., Hartmanis, J., and van Leeuwen, J. (eds.).

    Google Scholar 

  54. Lebedev, V. I. (1998).Russ. J. Numer. Ansl. Math. Modelling 13(2), 107–116.

    MATH  Google Scholar 

  55. Medovikov, A. A. (1998).BIT 38(2), 372–390.

    Article  MATH  MathSciNet  Google Scholar 

  56. Golushko, M. I., and Novikov, E. A. (1999)Russ. J. Numer. Anal. Math. Modelling,14(1), 71–85.

    Article  MATH  MathSciNet  Google Scholar 

  57. Abdulle, A. (2000).BIT,40(1), 177–182.

    Article  MATH  MathSciNet  Google Scholar 

  58. Bakker, M. (1971). Technical Note TN 62, Mathematical Center, Amsterdam, (in Dutch).

  59. Van der Houwen, P. J. (1994). CWI Report NM-R9420, CWI, Amsterdam.

    Google Scholar 

  60. Guillou, A., and Lago, B. (1961).Recherche de formules a grand rayon de stabilité, ler Congr. Assoc. Fran. Calcul, AFCAL, Grenoble, Sept. 1960, pp. 43–56.

  61. Schlichting, H. (1979).Boundary-Layer Theory, 7th edn, McGraw-Hill, New York.

    MATH  Google Scholar 

  62. Williams, F. A. (1985).Combustion Theory, 2nd edn, Addison-Wesley, New York.

    Google Scholar 

  63. Najm, H. N., Knio, O. M., and Paul, P. H. (2003). Sandia Report SAND2003-8412, Sandia National Laboratories.

  64. Brown, P. N., Byrne, G. D., and Hindmarsh, A. C. (1989).SIAM J. Sci. Stat. Comput. 10, 1038–1051.

    Article  MATH  MathSciNet  Google Scholar 

  65. Mahalingam, S., Cantwell, B. J., and Ferziger, J. H. (1990).Phys. Fluids A,2, 720–728.

    Article  Google Scholar 

  66. Sportisse, B. (2000).J. Comp. Phys. 161, 140–168.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najm, H.N., Knio, O.M. Modeling low mach number reacting flow with detailed chemistry and transport. J Sci Comput 25, 263–287 (2005). https://doi.org/10.1007/BF02728991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728991

Key words

Navigation