Skip to main content
Log in

Scalar-particle production near the singularity in an anisotropic universe. I. Scalar field theory

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

In this paper we will present the mathematical theory of a quantum scalar field in a Bianchi I anisotropic space-time; the main result is the explicit construction of a Hamiltonian formalism, based on techniques very similar to those of the Bose-gas theory, which leads to an unambiguous interpretation of the particle number operator. This formalism allows us to treat in aquantitative fashion the process of particle creation (or destruction) by a time-varying gravitational field near the initial singularity, taking into account the back-reaction of the particles created on the gravitational field itself.

Riassunto

Nel presente lavoro si presenta la teoria matematica di un campo scalare quantizzato in uno spazio-tempo anisotropo del tipo Bianchi I. Si costruisce un formalismo hamiltoniano, basato su tecniche molto simili a quelle usate nella teoria del gas di bosoni, capace di fornire un'interpretazione priva di ambiguità dell'operatore «numero di particelle». Il formalismo così costruito permette di studiare in modo quantitativo i processi di creazione (o distruzione) di particelle da parte di un campo gravitazionale rapidamente variabile nel tempo nei pressi della singolarità iniziale; è possibile, con l'aiuto di questo formalismo, tener conto della reazione delle particelle create sul campo gravitazionale medesimo.

Резюме

В этой статье мы предлагаем математическую теорию квантового скалярного поля в анизотропном пространстве-времени Бьянки И. Развивается гамильтонов формализм, основанный на технике очень близкой к технике теории Бозе-газа. Предложенный формализм приводит к однозначной интерпретации оператора числа частиц. Зтот формализм позволяет нам количесмвенно рассмотреть процесс рождения (или уничтожения) частиц в изменяющемся во времени гравитационном поле вблизи начальной сингулярности, учитывая обратную реакцию рожденных частиц на само гравитационное поле.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pessa:Lett. Nuovo Cimento,15, 291, 295 (1976); see alsoE. Pessa:Sulla teoria generale di un campo scalare quantizzato in un universo anisotropo del tipo Bianchi I, Tesi di perfezionamento in Fisica, University of Rome, 1976 (unpublished).

    Article  MathSciNet  ADS  Google Scholar 

  2. Ya. B. Zel'dovich:JETP. Lett.,12, 307 (1970).

    ADS  Google Scholar 

  3. Ya. B. Zel'dovich andA. A. Starobinskij:Sov. Phys. JETP,34, 1159 (1972).

    ADS  Google Scholar 

  4. V. N. Lukash andA. A. Starobinskij:Sov. Phys. JETP,39, 742 (1974).

    ADS  Google Scholar 

  5. See ref. (2–4).Ya. B. Zel'dovich andA. A. Starobinskij:Sov. Phys. JETP,34, 1159 (1972).V. N. Lukash andA. A. Starobinskij:Sov. Phys. JETP,39, 742 (1974); see also, for the corresponding problem in Robertson-Walker spacetimes,L. Parker:Phys. Rev.,183, 1057 (1969);A. A. Grib andS. G. Mamaev:Sov. Journ. Nucl. Phys.,10, 722 (1970);14, 450 (1972).

    ADS  Google Scholar 

  6. R. Penrose:Conformal treatment of infinity, inRelativity, Groups and Topology, edited byB. S. De Witt andC. De Witt (London, 1964), p. 565.

  7. V. Fock:The Theory of Space, Time and Gravitation (Oxford, 1964), p. 375; see alsoL. Landau andE. M. Lifshitz:Théorie du champ, (Moscou, 1966), p. 425.

  8. SeeL. Parker:Phys. Rev.,183, 1057 (1969);Phys. Rev. Lett.,28, 705 (1972).

    Article  ADS  MATH  Google Scholar 

  9. See, on this problem,H. E. De Meyer:Lett. Nuovo Cimento,11, 498 (1974), with earlier bibliography.

    Article  Google Scholar 

  10. SeeO. Heckmann andE. Schücking:Relativity and cosmology, inGravitation. An Introduction to Current Research, edited byL. Witten (New York, N. Y., 1962), p. 438; also,G. F. R. Ellis andM. A. H. MacCallum:Comm. Math. Phys.,12, 108 (1969); papers of fundamental importance are those ofK. C. Jacobs:Astrophys. Journ.,153, 661 (1968);155, 379 (1969);L. C. Shepley:Type I cosmologies, inCargése Lectures in Physics, edited byE. Schatzman, Vol.6 (New York, N. Y., 1973), p. 227.

  11. L. Parker:Phys. Rev.,183, 1057 (1969);Gen. Rel. Grav.,6, 21 (1975).

    Article  ADS  MATH  Google Scholar 

  12. See ref. (3)

    ADS  Google Scholar 

  13. See,e.g.,L. Brillouin:Wave Propagation in Periodic Structures (New York, N. Y., 1953).

  14. M. Born andT. von Karman:Phys. Zeits.,13, 297 (1912);14, 15 (1913); see alsoM. Blackman:Rep. Prog. Phys.,8, 11 (1941).

    MATH  Google Scholar 

  15. See,e.g. L. Landau andE. M. Lifshitz:Physique statistique (Moscou, 1967), p. 286 orA. A. Abrikosov, L. P. Gor'kov andI. Ye. Dzialoshinskii:Quantum Field Theoretical Methods in Statistical Physics, Chap.1 (Oxford, 1965).

  16. SeeA. Lichnerowicz:Propagateurs, commutateurs et anticommutateurs en relativité générale, inRelativity, Groups and Topology, edited byB. S. De Witt andC. De Witt (London, 1964), p. 823.

  17. See, on dispersive media,L. Landau andE. M. Lifshitz:Electrodynamique des milieux continus (Moscow, 1969), p. 325; similar ideas has been advanced byF. Hehl:Space-time as generalized Cosserat continuum, inMechanics of Generalized Continua (Berlin and Heidelberg, 1968), p. 347;A. D. Sakharov:Sov. Phys. Dokl.,12, 1040 (1968).

  18. See,e.g.,G. Ludwig:Journ. Math. Phys.,12, 1220 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. This procedure has much to do with the Fourier decomposition of the gravitational field, extensively used in the theory of gravitational waves; see,e.g.,S. Weinberg:Gravitation and Cosmology, Chap. 10 (New York, N. Y., 1972); Fourier decomposition of the gravitational field in the treatment of particle creation process has been used byH. Urbantke:Creation of particles by gravitational fields, inRendiconti S.I.F., Course XLVII, edited byR. K. Sachs (New York, N. Y., 1971), p. 383.

  20. See,e.g., ref. (16) SeeA. Lichnerowicz:Propagateurs, commutateurs et anticommutateurs en relativité générale, inRelativity, Groups and Topology, edited byB. S. De Witt andC. De Witt (London, 1964), p. 823.

  21. R. Utiyama andB. S. De Witt:Journ. Math. Phys.,3, 608 (1962);L. Parker andS. A. Fulling:Phys. Rev. D,9, 341 (1974);S. A. Fulling andL. Parker:Ann, of Phys.,87, 176 (1974); see alsoB. S. De Witt:Dynamical theory of groups and fields, inRelativity, Groups and Topology, edited byB. S. De Witt andC. De Witt (London, 1964), p. 814.

    Article  ADS  MATH  Google Scholar 

  22. C. W. Misner:Rev. Mod. Phys.,29, 497 (1957);R. P. Feynman:Acta Phys. Polon.,24, 697 (1963);H. Leutwyler:Phys. Rev.,134, 1155 (1964);B. S. De Witt:Phys. Rev.,160, 1113 (1967);162, 1195, 1239 (1967);L. D. Faddeev andV. N. Popov:Phys. Lett.,25 B, 29 (1967);S. Mandelstam:Phys. Rev.,175, 1580, 1604 (1968); see the papers byJ. R. Klauder, A. Komar, C. W. Misner, A. E. Fischer andB. S. De Witt: inRelativity, edited byM. Carmeli, S. I. Fickler andL. Witten (New York, N. Y., 1970); see also the review byB. S. De Witt:Gen. Rel. Grav.,1, 181 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. L. Parker andS. A. Fulling:Phys. Rev. D,7, 2357 (1973); see also on this pointA. Quale:Gen. Rel. Grav.,6, 63 (1975).

    Article  ADS  Google Scholar 

  24. See the analogous calculation for the electromagnetic radiation byG. Gamow:Rev. Mod. Phys.,21, 367 (1949).

    Article  ADS  Google Scholar 

  25. See ref. (2).

    ADS  Google Scholar 

  26. See,e.g.,F. Ayres:Differential Equations (New York, N. Y., 1952), p. 111.

  27. F. Bloch andA. Nordsieck:Phys. Rev.,52, 54 (1937).

    Article  ADS  Google Scholar 

  28. See, for a clear exposition,J. D. Bjorken andS. D. Drell:Relativistic Quantum Fields (New York, N. Y., 1965), p. 202;J. M. Jauch andF. Rohrlich:The theory of Photons and Electrons (Cambridge, Mass., 1955), p. 396.

  29. N. Bogoliubov:Journ. Phys. USSR,9, 23 (1947);Sov. Phys. JETP,7, 51 (1958);Nuovo Cimento,7, 794 (1958); the use of Bogoliubov transformations in our problem has been introduced byL. Parker:Phys. Rev.,183, 1057 (1969); later calculations are those ofYa.B. Zel'dovich andA. A. Starobinskij:Sov. Phys. JETP,34, 1159 (1972);B. L. Hu, S. A. Fulling andL. Parker:Phys. Rev. D,8, 2377 (1973);M. Castagnino, A. Verbeure andR. A. Weder:Nuovo Cimento,26 B, 396 (1975).

    Google Scholar 

  30. L. Landau andE. M. Lifschitz:Théorie du champ (Moscou, 1966), p. 434.

  31. See ref. (15),L. Landau andE. M. Lifshitz:Physique statistique (Moscou, 1967), p. 286.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessa, E. Scalar-particle production near the singularity in an anisotropic universe. I. Scalar field theory. Nuov Cim B 37, 155–184 (1977). https://doi.org/10.1007/BF02726315

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726315

Navigation