Skip to main content
Log in

Quantum kinetic approach to the Schwinger production of scalar particles in an expanding universe

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the Schwinger pair creation of scalar charged particles by a homogeneous electric field in an expanding universe in the quantum kinetic approach. We introduce an adiabatic vacuum for the scalar field based on the Wentzel–Kramers–Brillouin solution to the mode equation in conformal time and apply the formalism of Bogolyubov coefficients to derive a system of quantum Vlasov equations for three real kinetic functions. Compared to the analogous system of equations previously reported in the literature, the new one has two advantages. First, its solutions exhibit a faster decrease at large momenta which makes it more suitable for numerical computations. Second, it predicts no particle creation in the case of conformally coupled massless scalar field in the vanishing electric field, i.e., it respects the conformal symmetry of the system. We identify the ultraviolet divergences in the electric current and energy–momentum tensor of produced particles and introduce the corresponding counterterms in order to cancel them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout this work, by “electromagnetic field” we mean any Abelian gauge field, not necessarily the one corresponding to \(U(1)_{\textrm{EM}}\) subgroup of the Standard Model.

  2. Note, that in certain particular cases when the time dependences of the scale factor and the electric field have a simple form, one can find exact analytical solution to Eq. (8); see, e.g., Refs. [7, 13, 14] for the case of a minimally coupled complex scalar field in the constant electric field in de Sitter spacetime.

  3. The quantities \(\varvec{p}\) and \(\epsilon _{\varvec{p}}\) do not coincide with the physical kinetic momentum and energy of the scalar particle measured by the comoving cosmological observer. They are introduced for convenience in further analysis. The corresponding physical quantities can be expressed as \(\varvec{p}_{\textrm{phys}}=\varvec{p}/a\) and \(\epsilon _{\varvec{p},\textrm{phys}}=\epsilon _{\varvec{p}}/a\).

References

  1. Sauter, F.: Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742 (1931). https://doi.org/10.1007/BF01339461

  2. Heisenberg, W., Euler, H.: Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714 (1936). https://doi.org/10.1007/BF01343663

    Article  ADS  Google Scholar 

  3. Schwinger, J.S.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951). https://doi.org/10.1103/PhysRev.82.664

    Article  ADS  MathSciNet  Google Scholar 

  4. Cohen, T.D., McGady, D.A.: The Schwinger mechanism revisited. Phys. Rev. D 78, 036008 (2008). https://doi.org/10.1103/PhysRevD.78.036008

    Article  ADS  Google Scholar 

  5. Ruffini, R., Vereshchagin, G., Xue, S.-S.: Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rept. 487, 1 (2010). https://doi.org/10.1016/j.physrep.2009.10.004

    Article  ADS  Google Scholar 

  6. Kim, C.M., Kim, S.P.: Schwinger pair production and vacuum birefringence around high magnetized neutron stars. In: 5th Zeldovich Meeting 8 (2023). [arxiv:2308.15830]

  7. Kobayashi, T., Afshordi, N.: Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe. JHEP 10, 166 (2014). https://doi.org/10.1007/JHEP10(2014)166

    Article  ADS  MathSciNet  Google Scholar 

  8. Sharma, R., Jagannathan, S., Seshadri, T.R., Subramanian, K.: Challenges in inflationary magnetogenesis: constraints from strong coupling, backreaction and the Schwinger effect. Phys. Rev. D 96, 083511 (2017). https://doi.org/10.1103/PhysRevD.96.083511

    Article  ADS  Google Scholar 

  9. Domcke, V., Ema, Y., Mukaida, K.: Chiral anomaly Schwinger effect, Euler–Heisenberg Lagrangian, and application to axion inflation. JHEP 02, 055 (2020). https://doi.org/10.1007/JHEP02(2020)055

    Article  ADS  MathSciNet  Google Scholar 

  10. Turner, M.S., Widrow, L.M.: Inflation produced, large scale magnetic fields. Phys. Rev. D 37, 2743 (1988). https://doi.org/10.1103/PhysRevD.37.2743

    Article  ADS  Google Scholar 

  11. Ratra, B.: Cosmological ‘seed’ magnetic field from inflation. Astrophys. J. Lett. 391, L1 (1992). https://doi.org/10.1086/186384

    Article  ADS  Google Scholar 

  12. Garretson, W.D., Field, G.B., Carroll, S.M.: Primordial magnetic fields from pseudoGoldstone bosons. Phys. Rev. D 46, 5346 (1992). https://doi.org/10.1103/PhysRevD.46.5346

    Article  ADS  Google Scholar 

  13. Fröb, M.B., Garriga, J., Kanno, S., Sasaki, M., Soda, J., Tanaka, T., et al.: Schwinger effect in de Sitter space. JCAP 04, 009 (2014). https://doi.org/10.1088/1475-7516/2014/04/009

    Article  ADS  MathSciNet  Google Scholar 

  14. Bavarsad, E., Stahl, C., Xue, S.-S.: Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime. Phys. Rev. D 94, 104011 (2016). https://doi.org/10.1103/PhysRevD.94.104011

    Article  ADS  MathSciNet  Google Scholar 

  15. Stahl, C., Strobel, E., Xue, S.-S.: Fermionic current and Schwinger effect in de Sitter spacetime. Phys. Rev. D 93, 025004 (2016). https://doi.org/10.1103/PhysRevD.93.025004

    Article  ADS  MathSciNet  Google Scholar 

  16. Hayashinaka, T., Yokoyama, J.: Point splitting renormalization of Schwinger induced current in de Sitter spacetime. JCAP 07, 012 (2016). https://doi.org/10.1088/1475-7516/2016/07/012

    Article  ADS  MathSciNet  Google Scholar 

  17. Hayashinaka, T., Fujita, T., Yokoyama, J.: Fermionic Schwinger effect and induced current in de Sitter space. JCAP 07, 010 (2016). https://doi.org/10.1088/1475-7516/2016/07/010

    Article  ADS  MathSciNet  Google Scholar 

  18. Sharma, R., Singh, S.: Multifaceted Schwinger effect in de Sitter space. Phys. Rev. D 96, 025012 (2017). https://doi.org/10.1103/PhysRevD.96.025012

    Article  ADS  MathSciNet  Google Scholar 

  19. Bavarsad, E., Kim, S.P., Stahl, C., Xue, S.-S.: Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime. Phys. Rev. D 97, 025017 (2018). https://doi.org/10.1103/PhysRevD.97.025017

    Article  ADS  MathSciNet  Google Scholar 

  20. Hayashinaka, T., Xue, S.-S.: Physical renormalization condition for de Sitter QED. Phys. Rev. D 97, 105010 (2018). https://doi.org/10.1103/PhysRevD.97.105010

    Article  ADS  Google Scholar 

  21. Banyeres, M., Domènech, G., Garriga, J.: Vacuum birefringence and the Schwinger effect in (3+1) de Sitter. JCAP 10, 023 (2018). https://doi.org/10.1088/1475-7516/2018/10/023

    Article  ADS  MathSciNet  Google Scholar 

  22. Domcke, V., Mukaida, K.: Gauge field and fermion production during axion inflation. JCAP 11, 020 (2018). https://doi.org/10.1088/1475-7516/2018/11/020

    Article  ADS  MathSciNet  Google Scholar 

  23. Tangarife, W., Tobioka, K., Ubaldi, L., Volansky, T.: Dynamics of relaxed inflation. JHEP 02, 084 (2018). https://doi.org/10.1007/JHEP02(2018)084

    Article  ADS  Google Scholar 

  24. Stahl, C.: Schwinger effect impacting primordial magnetogenesis. Nucl. Phys. B 939, 95 (2019). https://doi.org/10.1016/j.nuclphysb.2018.12.017

    Article  ADS  Google Scholar 

  25. Geng, J.-J., Li, B.-F., Soda, J., Wang, A., Wu, Q., Zhu, T.: Schwinger pair production by electric field coupled to inflaton. JCAP 02, 018 (2018). https://doi.org/10.1088/1475-7516/2018/02/018

    Article  ADS  Google Scholar 

  26. Giovannini, M.: Spectator electric fields, de Sitter spacetime, and the Schwinger effect. Phys. Rev. D 97, 061301 (2018). https://doi.org/10.1103/PhysRevD.97.061301

    Article  ADS  Google Scholar 

  27. Kitamoto, H.: Schwinger effect in inflaton-driven electric field. Phys. Rev. D 98, 103512 (2018). https://doi.org/10.1103/PhysRevD.98.103512

    Article  ADS  MathSciNet  Google Scholar 

  28. Chua, W.Z., Ding, Q., Wang, Y., Zhou, S.: Imprints of Schwinger effect on primordial spectra. JHEP 04, 066 (2019). https://doi.org/10.1007/JHEP04(2019)066

    Article  ADS  MathSciNet  Google Scholar 

  29. Shakeri, S., Gorji, M.A., Firouzjahi, H.: Schwinger mechanism during inflation. Phys. Rev. D 99, 103525 (2019). https://doi.org/10.1103/PhysRevD.99.103525

    Article  ADS  MathSciNet  Google Scholar 

  30. Sobol, O.O., Gorbar, E.V., Kamarpour, M., Vilchinskii, S.I.: Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis. Phys. Rev. D 98, 063534 (2018). https://doi.org/10.1103/PhysRevD.98.063534

    Article  ADS  MathSciNet  Google Scholar 

  31. Sobol, O.O., Gorbar, E.V., Vilchinskii, S.I.: Backreaction of electromagnetic fields and the Schwinger effect in pseudoscalar inflation magnetogenesis. Phys. Rev. D 100, 063523 (2019). https://doi.org/10.1103/PhysRevD.100.063523

    Article  ADS  MathSciNet  Google Scholar 

  32. Gorbar, E.V., Schmitz, K., Sobol, O.O., Vilchinskii, S.I.: Gauge-field production during axion inflation in the gradient expansion formalism. Phys. Rev. D 104, 123504 (2021). https://doi.org/10.1103/PhysRevD.104.123504

    Article  ADS  MathSciNet  Google Scholar 

  33. Gorbar, E.V., Schmitz, K., Sobol, O.O., Vilchinskii, S.I.: Hypermagnetogenesis from axion inflation: model-independent estimates. Phys. Rev. D 105, 043530 (2022). https://doi.org/10.1103/PhysRevD.105.043530

    Article  ADS  MathSciNet  Google Scholar 

  34. Kluger, Y., Eisenberg, J.M., Svetitsky, B., Cooper, F., Mottola, E.: Pair production in a strong electric field. Phys. Rev. Lett. 67, 2427 (1991). https://doi.org/10.1103/PhysRevLett.67.2427

    Article  ADS  Google Scholar 

  35. Kluger, Y., Eisenberg, J.M., Svetitsky, B., Cooper, F., Mottola, E.: Fermion pair production in a strong electric field. Phys. Rev. D 45, 4659 (1992). https://doi.org/10.1103/PhysRevD.45.4659

    Article  ADS  Google Scholar 

  36. Schmidt, S.M., Blaschke, D., Ropke, G., Smolyansky, S.A., Prozorkevich, A.V., Toneev, V.D.: A quantum kinetic equation for particle production in the Schwinger mechanism. Int. J. Mod. Phys. E 7, 709 (1998). https://doi.org/10.1142/S0218301398000403

    Article  ADS  Google Scholar 

  37. Kluger, Y., Mottola, E., Eisenberg, J.M.: The quantum Vlasov equation and its Markov limit. Phys. Rev. D 58, 125015 (1998). https://doi.org/10.1103/PhysRevD.58.125015

    Article  ADS  Google Scholar 

  38. Schmidt, S.M., Blaschke, D., Röpke, G., Prozorkevich, A.V., Smolyansky, S.A., Toneev, V.D.: NonMarkovian effects in strong field pair creation. Phys. Rev. D 59, 094005 (1999). https://doi.org/10.1103/PhysRevD.59.094005

  39. Bloch, J.C.R., Mizerny, V.A., Prozorkevich, A.V., Roberts, C.D., Schmidt, S.M., Smolyansky, S.A., et al.: Pair creation: back reactions and damping. Phys. Rev. D 60, 116011 (1999). https://doi.org/10.1103/PhysRevD.60.116011

    Article  ADS  Google Scholar 

  40. Alkofer, R., Hecht, M.B., Roberts, C.D., Schmidt, S.M., Vinnik, D.V.: Pair creation and an X-ray free electron laser. Phys. Rev. Lett. 87, 193902 (2001). https://doi.org/10.1103/PhysRevLett.87.193902

    Article  ADS  Google Scholar 

  41. Kim, S.P., Schubert, C.: Non-adiabatic quantum Vlasov equation for Schwinger pair production. Phys. Rev. D 84, 125028 (2011). https://doi.org/10.1103/PhysRevD.84.125028

    Article  ADS  Google Scholar 

  42. Blaschke, D.B., Juchnowski, L., Otto, A.: Kinetic approach to pair production in strong fields-two lessons for applications to heavy-ion collisions. Particles 2, 166 (2019). https://doi.org/10.3390/particles2020012

    Article  Google Scholar 

  43. Gorbar, E.V., Momot, A.I., Sobol, O.O., Vilchinskii, S.I.: Kinetic approach to the Schwinger effect during inflation. Phys. Rev. D 100, 123502 (2019). https://doi.org/10.1103/PhysRevD.100.123502

    Article  ADS  MathSciNet  Google Scholar 

  44. Sobol, O.O., Gorbar, E.V., Momot, A.I., Vilchinskii, S.I.: Schwinger production of scalar particles during and after inflation from the first principles. Phys. Rev. D 102, 023506 (2020). https://doi.org/10.1103/PhysRevD.102.023506

    Article  ADS  MathSciNet  Google Scholar 

  45. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (1982). https://doi.org/10.1017/CBO9780511622632

    Book  Google Scholar 

  46. Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity. Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511813924

    Book  Google Scholar 

  47. Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968). https://doi.org/10.1103/PhysRevLett.21.562

    Article  ADS  Google Scholar 

  48. Parker, L.: Quantized fields and particle creation in expanding universes I. Phys. Rev. 183, 1057 (1969). https://doi.org/10.1103/PhysRev.183.1057

    Article  ADS  Google Scholar 

  49. Bunch, T.S., Davies, P.C.W.: Quantum field theory in de Sitter space: renormalization by point splitting. Proc. R. Soc. Lond. A 360, 117 (1978). https://doi.org/10.1098/rspa.1978.0060

    Article  ADS  MathSciNet  Google Scholar 

  50. Perelomov, A.M.: Some remarks on boson pair creation in alternating external field. Phys. Lett. A 39, 165 (1972). https://doi.org/10.1016/0375-9601(72)90689-5

    Article  ADS  Google Scholar 

  51. Srednicki, M.: Quantum Field Theory, 1st edn. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511813917

    Book  Google Scholar 

  52. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

    Article  ADS  Google Scholar 

  53. Christensen, S.M.: Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point separation method. Phys. Rev. D 14, 2490 (1976). https://doi.org/10.1103/PhysRevD.14.2490

    Article  ADS  MathSciNet  Google Scholar 

  54. Adler, S.L.: Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969). https://doi.org/10.1103/PhysRev.177.2426

    Article  ADS  Google Scholar 

  55. Bell, J.S., Jackiw, R.: A PCAC puzzle: \(\pi ^0 {\rightarrow }\gamma \gamma \) in the \(\sigma \) model. Nuovo Cim. A 60, 47 (1969). https://doi.org/10.1007/BF02823296

    Article  ADS  Google Scholar 

Download references

Acknowledgements

O. O. S. is grateful to Prof. Kai Schmitz and all members of Particle Cosmology group for their kind hospitality at the University of Münster where the final part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia V. Lysenko.

Ethics declarations

Funding

The work was supported by the National Research Foundation of Ukraine (Project No. 2020.02/0062). The work of O. O. S. was sustained by a Philipp-Schwartz fellowship of the University of Münster.

Conflicts of interest

The authors declare no Conflict of interest.

Author Contributions

All authors contributed in the writing and research of this paper. A. L. did computations and wrote the first draft of Sect. 2, 3 and Appendix A. O. S. performed computations in Sect. 4 and wrote Sect. 1, 4, and 5. Both authors have checked and approved the manuscript.

Data availability

No new data were created or analysed in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Expansion in the inverse powers of momentum

Appendix A Expansion in the inverse powers of momentum

In this Appendix, we derive asymptotical expressions for the kinetic functions \(\mathcal {F}(\eta ,\varvec{p})\), \(\mathcal {G}(\eta ,\varvec{p})\), and \(\mathcal {H}(\eta ,\varvec{p})\) in the limit of large momenta. For this, we need the corresponding expansions of the quantities \(\omega (\eta ,\varvec{p})\) and \(Q(\eta ,\varvec{p})\) which are the coefficients in the system of quantum Vlasov equations (24):

$$\begin{aligned}{} & {} \omega (\eta ,\varvec{p})=p+\omega ^{(-1)}+ \mathcal {O}(p^{-3}), \qquad \omega ^{(-1)}=\frac{m^{2}a^{3}+(6\xi -1)a''}{2ap}, \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} Q(\eta ,\varvec{p})=Q^{(-1)}+Q^{(-2)}+ \mathcal {O}(p^{-3}), \end{aligned}$$
(A2)
$$\begin{aligned}{} & {} Q^{(-1)}=\frac{e\,a^{2}(\varvec{p}\!\cdot \!\varvec{E})}{p^{2}}, \quad Q^{(-2)}=\frac{1}{p^{2}}\left[ m^{2}aa'+\frac{6\xi -1}{2}\left( \frac{a'''}{a}-\frac{a'a''}{a^{2}} \right) \right] .\nonumber \\ \end{aligned}$$
(A3)

Let us represent the total derivative operator with respect to conformal time as the sum of two operators \(\hat{L}^{(0)}\) and \(\hat{L}^{(-1)}\):

$$\begin{aligned} \frac{d}{d\eta }=\hat{L}^{(0)}+\hat{L}^{(-1)},\quad \text {where} \quad \hat{L}^{(0)}=\frac{\partial }{\partial \eta },\quad \hat{L}^{(-1)}=e\,a^{2}\varvec{E}\frac{\partial }{\partial \varvec{p}}. \end{aligned}$$
(A4)

Obviously, the operator \(\hat{L}^{(0)}\) does not change the asymptotical behavior of a given term at large momenta while \(\hat{L}^{(-1)}\) reduces the power of momentum by one.

Further, we represent the kinetic functions as power series in inverse momentum: for \(\mathcal {F}(\eta ,\varvec{p})\), \(\mathcal {G}(\eta ,\varvec{p})\), and \(\mathcal {H}(\eta ,\varvec{p})\) the series starts from the term \(\propto p^{-4}\), \(\propto p^{-3}\), and \(\propto p^{-2}\), respectively. Then, substituting these expansions together with Eqs. (A1)–(A4) into the system of quantum Vlasov equations in Eq. (24), we obtain the following set of equations:

$$\begin{aligned} \hat{L}^{(0)}\mathcal {F}^{(-4)}&=Q^{(-1)}\mathcal {G}^{(-3)}\, , \end{aligned}$$
(A5)
$$\begin{aligned} 0&=\frac{1}{2}Q^{(-1)}+2p\,\mathcal {H}^{(-2)}\, , \end{aligned}$$
(A6)
$$\begin{aligned} 0&=\frac{1}{2}Q^{(-2)}+2p\,\mathcal {H}^{(-3)},\end{aligned}$$
(A7)
$$\begin{aligned} \hat{L}^{(0)}\mathcal {H}^{(-2)}&=-2p\,\mathcal {G}^{(-3)}\, ,\end{aligned}$$
(A8)
$$\begin{aligned} \hat{L}^{(0)}\mathcal {H}^{(-3)}+\hat{L}^{(-1)}\mathcal {H}^{(-2)}&=-2p\,\mathcal {G}^{(-4)}\, . \end{aligned}$$
(A9)

From Eqs. (A6) and (A7) we immediately find expressions for the terms \(\mathcal {H}^{(-2)}\) and \(\mathcal {H}^{(-3)}\):

$$\begin{aligned} \mathcal {H}^{(-2)}&=-\frac{1}{4p}Q^{(-1)}=-\frac{e\,a^{2}(\hat{\varvec{p}}\!\cdot \!\varvec{E})}{4p^{2}}\, ,\end{aligned}$$
(A10)
$$\begin{aligned} \mathcal {H}^{(-3)}&=-\frac{1}{4p}Q^{(-2)}=-\frac{1}{4p^{3}}\left[ m^{2}aa'+\frac{6\xi -1}{2}\left( \frac{a'''}{a}-\frac{a'a''}{a^{2}} \right) \right] \, , \end{aligned}$$
(A11)

where \(\hat{\varvec{p}}=\varvec{p}/p\) is the unit vector in the direction of \(\varvec{p}\).

Then, the terms \(\mathcal {G}^{(-3)}\) and \(\mathcal {G}^{(-4)}\) can be found from Eqs. (A8) and (A9), respectively:

$$\begin{aligned} \mathcal {G}^{(-3)}&=-\frac{1}{2p}\hat{L}^{(0)}\mathcal {H}^{(-2)}=\frac{ea^2}{8p^{3}}\,\hat{\varvec{p}}\cdot \Big (\varvec{E}'+2\frac{a'}{a}\varvec{E} \Big ) \, ,\end{aligned}$$
(A12)
$$\begin{aligned} \mathcal {G}^{(-4)}&=-\frac{1}{2p}\left[ \hat{L}^{(0)}\mathcal {H}^{(-3)}+\hat{L}^{(-1)}\mathcal {H}^{(-2)} \right] =\frac{e^{2}a^{4}\big [\varvec{E}^{2}-3(\hat{\varvec{p}}\cdot \varvec{E})^2\big ]}{8p^{4}} \nonumber \\&\quad + \frac{1}{8p^{4}}\!\bigg [m^{2}(a^{\prime 2}+aa'') + (6\xi -1)\left( \frac{a^{\textrm{IV}}}{2a}-\frac{a^{\prime \prime 2}}{2a^{2}}-\frac{a'a'''}{a^{2}} + \frac{a^{\prime 2}a''}{a^{3}} \right) \bigg ]\, . \end{aligned}$$
(A13)

Finally, the term \(\mathcal {F}^{(-4)}\) can be found by solving differential equation (A5). It is easy to see that the following function is a solution to this equation:

$$\begin{aligned} \mathcal {F}^{(-4)}=\frac{e^{2}a^{4}(\hat{\varvec{p}}\!\cdot \!\varvec{E})^{2}}{16p^{4}}. \end{aligned}$$
(A14)

Thus, we derived a few first terms in the Laurent series for the kinetic functions \(\mathcal {F}(\eta ,\varvec{p})\), \(\mathcal {G}(\eta ,\varvec{p})\), and \(\mathcal {H}(\eta ,\varvec{p})\) at large momenta \(p\rightarrow \infty \). However, it is not convenient to use them in the computations in Sect. 4 because they lead to spurious infrared divergences in the integrals for physical observables. In order to overcome this problem, it is more convenient to perform expansion in inverse powers of \(\epsilon _{\varvec{p}}\) instead of p. Therefore, in Eqs. (A10)–(A14) we replace \(p\rightarrow \epsilon _{\varvec{p}}\) in denominators and get Eqs. (37)–(39) in the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, A.V., Sobol, O.O. Quantum kinetic approach to the Schwinger production of scalar particles in an expanding universe. Gen Relativ Gravit 56, 39 (2024). https://doi.org/10.1007/s10714-024-03226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03226-8

Keywords

Navigation