Skip to main content
Log in

Finite-mass heat reservoirs and the second law

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

It is proved that a simple system composed of a pure substance, at its triple point, can exchange energy while passing through stable-equilibrium states at constant volume and temperature, and, therefore, represents a heat reservoir with finite mass. Moreover, it is proved that the behaviour of a pair of identical simple systems composed of the same substance, each in a state of the triple point, requires a slight modification of some recent statements of the second law of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for instance:Hatsopoulos, G. N. andKeenan J. H.,Principles of General Thermodynamics (Krieger, Huntington, N.Y.) 1981, p. 64;Callen H. B.,Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, N.Y.) 1985, p. 9;Gyftopoulos E. P. andBeretta G. P.,Thermodynamics: Foundations and Applications (Macmillan, New York, N.Y.) 1991, p. 263;Beretta G. P. andGyftopoulos E. P.,ASME Book H00699, AES, Vol. 24, 1991, p. 1.

    Google Scholar 

  2. Fermi E.,Thermodynamics (Prentice-Hall, Englewood Cliffs, N.J.) 1937, Chapt. 3.

    Google Scholar 

  3. Zemansky M. W.,Heat and Thermodynamics (Mc Graw-Hill, New York, N.Y.) 1968, Chapt. 4.

    Google Scholar 

  4. Zemansky M. W., Abbott M. M. andVan Ness H. C.,Basic Engineering Thermodynamics (Mc Graw-Hill, New York, N.Y.) 1975, Chapt. 4.

    Google Scholar 

  5. Hatsopoulos G. N. andKeenan J. H.,Principles of General Thermodynamics (Krieger, Huntington, N.Y.) 1981, Chapt. 14. For the definition of heat interaction, see Chapt. 6.

    Google Scholar 

  6. Callen H. B.,Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, N.Y.) 1985, Chapt. 4.

    Google Scholar 

  7. Kestin J.,A Course in Thermodynamics (Hemisphere, New York, N.Y.) 1979, Vol. I, Chapt. 5; Vol. II, Chapt. 14.

    Google Scholar 

  8. Hatsopoulos, G. N. andKeenan J. H.,Principles of General Thermodynamics (Krieger, Huntington, N.Y.) 1981, pp. 421–423.

    Google Scholar 

  9. Callen H. B.,Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, N.Y.) 1985, Chapt. 1, pp. 28–29.

    Google Scholar 

  10. Gyftopoulos, E. P. andBeretta G. P.,Thermodynamics: Foundations and Applications (Macmillan, New York, N.Y.) 1991, pp. 130–133.

    Google Scholar 

  11. Callen H. B.,Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, N.Y.) 1985, pp. 203–208.

    Google Scholar 

  12. Tisza L.,Ann. Phys. (N.Y.),13 (1961) 1.

    Article  MathSciNet  ADS  Google Scholar 

  13. Keenan J. H., Hatsopoulos G. N. andGyftopoulos E. P., inEncyclopaedia Britannica, Vol.18, 1991, p. 290.

  14. Gyftopoulos E. P. andBeretta G. P.,Thermodynamics: Foundations and Applications (Macmillan, New York, N.Y.) 1991, Chapt. 2, 4, 6.

    Google Scholar 

  15. Kestin J.,A Course in Thermodynamics (Hemisphere, New York, N.Y.) 1979, Vol. I, pp. 291–292;Gyftopoulos E. P. andBeretta G. P.,Thermodynamics: Foundations and Applications (Macmillan, New York, N.Y.) 1991, pp. 298–301.

    Google Scholar 

  16. Gibbs J. W.,Trans. Conn. Acad.,2 (1873) 309, reprinted inThe Scientific Papers of J. Willard Gibbs (Dover, New York, N.Y.) 1961, Vol. I, p. 1.

    Google Scholar 

  17. Thomsen J. S.,Am. J. Phys.,51 (1983) 462.

    Article  ADS  Google Scholar 

  18. Hatsopoulos G. N. andKeenan J. H.,Principles of General Thermodynamics (Krieger, Huntington, N.Y.) 1981, pp. 30, 34.

    Google Scholar 

  19. Zanchini E.,Nuovo Cimento B,107 (1992) 123.

    Article  MathSciNet  ADS  Google Scholar 

  20. Barletta A. andZanchini E.,Nuovo Cimento D,16 (1994) 189.

    Article  ADS  Google Scholar 

  21. See, for instance,1993 ASHRAE Handbook, Fundamentals, Sect. 6.4, Table 3 (ASHRAE, Atlanta, Ga.) 1993.

  22. This definition refers to heat reservoirs without internal walls. The definition could be easily extended to the case of the presence of internal walls, but such an extension is unnecessary. With this definition, a system with an internal wall can form, at most, a pair of heat reservoirs in neutral stable equilibrium.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanchini, E., Barletta, A. Finite-mass heat reservoirs and the second law. Nuov Cim B 110, 1245–1258 (1995). https://doi.org/10.1007/BF02724614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02724614

Keywords

Navigation