Skip to main content
Log in

Symmetry invariance and centre manifolds for dynamical systems

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

In this paper we analyse the role of general (possibly non-linear) time-independent Lie point symmetries in the study of finite-dimensional autonomous dynamical systems, and their relationship with the presence of manifolds invariant under the dynamical flow. We first show that stable and unstable manifolds are left invariant by all Lie point symmetries admitted by the dynamical system. An identical result cannot hold for the centre manifolds, because they are in general not uniquely defined. This non-uniqueness and the possibility that Lie point symmetries map a centre manifold into a different one, lead to some interesting features which we will discuss in detail. We can conclude that—once the reduction of the dynamics to the centre manifold has been performed—the reduced problem automatically inherites a Lie point symmetry from the original problem: this permits to extend properties, well known in standard equivariant bifurcation theory, to the case of general Lie point symmetries; in particular, we can extend classical results, obtained by means of the Lyapunov-Schmidt projection, to the case of bifurcation equations obtained by means of reduction to the centre manifold. We also discuss the reduction of the dynamical system into normal form (in the sense of Poincaré-Birkhoff-Dulac) and respectively into the «Shoshitaishvili form» (in both cases one centre manifold is given by a «flat» manifold), and the relationship existing between non-uniqueness of centre manifolds, perturbative expansions, and analyticity requirements. Finally, we present some examples which cover several aspects of the preceding discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ovsjannikov:Group Properties of Differential Equations (USSR Academy of Sciences, Novosibirsk, 1962);Group Analysis of Differential Equations (Academic Press, New York, N.Y., 1982).

    Google Scholar 

  2. P. J. Olver:Applications of Lie Groups to Differential Equations (Springer, Berlin, 1986).

    Book  Google Scholar 

  3. G. W. Bluman andS. Kumei:Symmetries and Differential Equations (Springer, Berlin, 1989).

    Book  MATH  Google Scholar 

  4. J. Guckenheimer andP. Holmes:Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, (Springer, New York, N.Y., 1983).

    Book  Google Scholar 

  5. D. Ruelle:Elements of Differentiable Dynamics and Bifurcation Theory (Academic Press, London, 1989).

    MATH  Google Scholar 

  6. A. Vanderbauwhede:Dyn. Rep.,2, 89 (1989).

    Article  MathSciNet  Google Scholar 

  7. J. D. Crawford:Rev. Mod. Phys.,63, 991 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Iooss andM. Adelmeyer:Topics in bifurcation theory and applications, inWinter School on Dynamical Systems and Frustrated Systems, CIMPA, UNESCO, Chile, 1991, 1992 (World Scientific, Singapore, 1993).

    Google Scholar 

  9. D. Ruelle:Arch. Rat. Mech. Anal.,51, 136 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. H. Sattinger:Group Theoretic Methods in Bifurcation Theory (Springer, Berlin, 1979);Branching in the Presence of Symmetry (SIAM, Philadelphia, Penn., 1983).

    Google Scholar 

  11. A. Vanderbauwhede:Local Bifurcation and Symmetry (Pitman, Boston, Mass., 1982).

    Google Scholar 

  12. M. Golubitsky, I. Stewart andD. Schaeffer:Singularity and Groups in Bifurcation Theory, Vol. II (Springer, New York, N.Y., 1988).

    Book  MATH  Google Scholar 

  13. J. D. Crawford andE. Knobloch:Annu. Rev. Fluid Mech.,23, 341 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Cicogna andG. Gaeta:Ann. Inst. H. Poincaré,56, 375 (1992).

    MathSciNet  Google Scholar 

  15. G. Cicogna andG. Gaeta:Phys. Lett. A,172, 361 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  16. V. I. Arnold:Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, New York, N.Y., 1988).

    Book  Google Scholar 

  17. V. I. Arnold andYu. S. Il’yashenko:Ordinary differential equations, inEncyclopaedia of Mathematical Sciences, Vol. I;Dynamical Systems I, edited byD. V. Anosov andV. I. Arnold (Springer, Berlin, 1988), pp. 1–148.

    Google Scholar 

  18. C. Elphic, E. Tirapegui, M. E. Brachet, P. Coullet andG. Iooss:Physica D,29, 95 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. N. Shoshitaishvili:Funct. Anal. Appl.,6, 169 (1972);Trans. Semin. I. G. Petrovskogo,1, 279 (1975).

    Article  MATH  Google Scholar 

  20. P. Bergé, Y. Pomeau andCh. Vidal:L’ordre dans le chaos (Hermann, Paris, 1984)

    Google Scholar 

  21. P. Manneville:Dissipative Structures and Weak Turbulence (Academic Press, Boston, Mass., 1990).

    MATH  Google Scholar 

  22. A. Vanderbauwhede andG. Iooss:Dyn. Rep. (New Series),1, 125 (1992).

    MathSciNet  Google Scholar 

  23. Th. Gallay:Comm. Math. Phys.,152, 249 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. Carr andR. G. Muncaster:J. Diff. Eqs.,50, 260, 280 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. G. Gaeta:Nonlinear Analysis,17, 825 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Courant andD. Hilbert:Methods of Mathematical Physics (Interscience Publ., New York, N.Y., 1962).

    Google Scholar 

  27. F. Takens:Topology,10, 133 (1971).

    Article  MathSciNet  Google Scholar 

  28. Yu. S. Il’yashenko andS. Yu. Yakovenko:Russ. Math. Surv.,46, 3 (1991).

    MathSciNet  MATH  Google Scholar 

  29. G. Cicogna andG. Gaeta:J. Phys. A,23, L799 (1990);25, 1535 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. G. Cicogna andG. Gaeta:Poincaré normal forms and Lie point symmetries, to be published inJ. Phys. A.

  31. T. K. Leen:Phys. Lett. A,174, 89 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Ecalle:Ann. Inst. Fourier,42, 73 (1992).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors of this paper have agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cicogna, G., Gaeta, G. Symmetry invariance and centre manifolds for dynamical systems. Nuovo Cim B 109, 59–76 (1994). https://doi.org/10.1007/BF02723730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723730

PACS 03.20

PACS 02.20

Navigation