Skip to main content
Log in

Numerical evaluation of the kinetic-energy operator

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The numerical accuracy of computing the kinetic energy of a quantum-mechanical system using the gradient operator is studied in this paper. To this end, a matrix formulation for deriving multi-point central-difference formulas for the first and higher-order derivatives of a non-singular function is developed. In particular, 7-point and 9-point formulas for derivatives of order one through six and one through eight, respectively, have been derived explicitly. Accuracy of the formulas has been tested by comparing the calculated values of the derivatives of a function with the exact ones. The 9-point formula for the gradient has been used to compute the kinetic energy of a particle and the results have been compared with those of the 9-point Laplacian. The calculations indicate that the kinetic energy computed via the gradient operator is as accurate as that obtained via the Laplacian operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. B. Hildebrand:Introduction to Numerical Analysis (McGraw-Hill, New York, N.Y., 1956).

    MATH  Google Scholar 

  2. J. C. Strikwerda:Finite Difference Schemes and Partial Differential Equations (Wadsworth and Brooks, Belmont, Cal., 1989).

    MATH  Google Scholar 

  3. W. G. Bickley:Math. Gaz.,25, 19 (1941).

    Article  MathSciNet  Google Scholar 

  4. A. Abramowitz andI. A. Stegun (Editors):Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1972).

    MATH  Google Scholar 

  5. D. Vautherin andD. M. Brink:Phys. Rev. C,5, 626 (1972).

    Article  ADS  Google Scholar 

  6. Q. Haider andD. Gogny:J. Phys. G,18, 993 (1992).

    Article  ADS  Google Scholar 

  7. T. H. R. Skyrme:Nucl. Phys.,9, 615 (1959).

    Article  MATH  Google Scholar 

  8. W. H. Press, B. P. Flannery, S. A. Teukolsky andW. T. Vetterling:Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, New York, N.Y., 1988).

    MATH  Google Scholar 

  9. Q. Haider, D. Gogny andM. S. Weiss: University of California Report No. UCID-2170 (1989).

  10. Q. Haider andL. C. Liu:J. Phys. G,14, 1527 (1988).

    Article  ADS  Google Scholar 

  11. Q. Haider andL. C. Liu:Z. Phys. A,335, 437 (1990).

    ADS  Google Scholar 

  12. E. Merzbacher:Quantum Mechanics (John Wiley, New York, N.Y., 1970).

    Google Scholar 

  13. P. Ring andP. Schuck:The Nuclear Many-Body Problem (Springer-Verlag, New York, N.Y., 1980).

    Book  Google Scholar 

  14. P. Bonche, H. Flocard, P. H. Heenen, S. J. Krieger andM. S. Weiss:Nucl. Phys. A,443, 39 (1985).

    Article  ADS  Google Scholar 

  15. A. DeShalit andH. Feshbach:Theoretical Nuclear Physics Vol. 1:Nuclear Structure (John Wiley, New York, N.Y., 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haider, Q. Numerical evaluation of the kinetic-energy operator. Nuov Cim B 109, 1039–1048 (1994). https://doi.org/10.1007/BF02723228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723228

PACS 02.60

PACS 02.60.Jh

PACS 02.70

Navigation