Skip to main content
Log in

On Calculating a Gradient in the Flux Correction Method

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Flux Correction method is a family of edge-based schemes for solving hyperbolic systems on unstructured meshes. The cruical operation there is a nodal gradient calculation of physical variables with at least second order of accuracy. There are two well-known procedures meeting this condition. One is based on Least Squares method and the other one is based on spectral elements. In this paper we compare resulting schemes and discuss their problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. Stoufflet, J. Periaux, F. Fezoui, and A. Dervieux, “Numerical simulation of 3-D hypersonic Euler flows around space vehicles using adapted finite elements,” AIAA Paper No. 87-0560 (1987).

  2. T. J. Barth, “Numerical aspects of computing high reynolds number flows on unstructured meshes,” AIAA Paper No. 91-0721 (1991).

  3. B. Koobus, F. Alauzet, and A. Dervieux, “Numerical algorithms for unstructured meshes,” in Computational Fluid Dynamics, Ed. by F. Magoules (CRC, Boca Raton, FL, 2011), pp. 131–203.

    Google Scholar 

  4. I. Abalakin, P. Bakhvalov, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Int. J. Numer. Methods Fluids 81, 331–356 (2016).

    Article  MathSciNet  Google Scholar 

  5. P. Bakhvalov and T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes,” Comput. Fluids 157, 312–324 (2017).

    Article  MathSciNet  Google Scholar 

  6. I. Abalakin, V. Bobkov, and V. Kozubskii, “Implementation of the low Mach number method for calculating flows in the NOISEtte software package,” Math. Model. Comput. Simul. 9, 689–697 (2017).

    Google Scholar 

  7. A. Katz and V. Sankaran, “An efficient correction method to obtain a formally third-order accurate flow solver for node-centered unstructured grids,” J. Sci. Comput. 51, 375–393 (2012).

    Article  MathSciNet  Google Scholar 

  8. B. Pincock and A. Katz, “High-order flux correction for viscous flows on arbitrary unstructured grids,” J. Sci. Comput. 61, 454–476 (2014).

    Article  MathSciNet  Google Scholar 

  9. C. D. Work and A. J. Katz, “Aspects of the flux correction method for solving the Navier-Stokes equations on unstructured meshes,” AIAA Paper No. 2015-0834 (2015).

  10. A. Katz and D. Work, “High-order flux correction/finite difference schemes for strand grids,” J. Comput. Phys. 282, 360–380 (2015).

    Article  MathSciNet  Google Scholar 

  11. O. Tong, Y. Yanagita, R. Shaap, S. Harris, and A. Katz, “High-order strand grids methods for shock-turbulence interaction,” AIAA Paper No. 2015-2283 (2015).

  12. H. Nishikawa, “Accuracy-preserving source term quadrature for third-order edge-based discretization,” J. Comput. Phys. 344, 595–622 (2017).

    Article  MathSciNet  Google Scholar 

  13. P. Bakhvalov and T. Kozubskaya, “Modification of flux correction method for accuracy improvement on unsteady problems,” J. Comput. Phys. 338, 199–216 (2017).

    Article  MathSciNet  Google Scholar 

  14. P. A. Bakhvalov, “Implementation of the flux correction method on hybrid unstructured meshes,” KIAM Preprint No. 38 (Keldysh Inst. Appl. Math., Moscow, 2017).

    Google Scholar 

  15. T. J. Barth, “A 3-D upwind Euler solver for unstructured meshes,” AIAA Paper No. 91-1548 (1991).

  16. P. Bakhvalov and T. Kozubskaya, “Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes,” Comput. Math. Math. Phys. 57, 680–697 (2017).

    Article  MathSciNet  Google Scholar 

  17. H. Nishikawa, “Beyond interface gradient. A general principle for constructing diffusion schemes,” AIAA Paper No. 2010-5093 (2010).

  18. A. G. Kulikovsky, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001: Taylor Francis, USA, 2000).

  19. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43, 357–372 (1981).

    Article  MathSciNet  Google Scholar 

  20. H. Luo, J. D. Baumt, and R. Lohner, “Edge-based finite element scheme for the Euler equations,” AIAA J. 32 (6) (1994).

  21. P. Eliasson, “EDGE, a Navier-Stokes solver for unstructured grids,” Tech. Rep. FOI-R-0298-SE (FOI Swedish Defence Res. Agency, Div. Aeronaut., FFA, Stockholm, 2001).

  22. Y. Nakashima, N. Watanabe, and H. Nishikawa, “Hyperbolic Navier-Stokes solver for three-dimensional flows,” AIAA Paper No. 2016-1101 (2016).

  23. H. Nishikawa, “Alternative formulations for first-, second-, and third-order hyperbolic Navier-Stokes schemes,” AIAA Paper No. 2015-2451 (2015).

  24. C. Debiez and A. Dervieux, “Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations,” Comput. Fluids 29, 89–118 (2000).

    Article  MathSciNet  Google Scholar 

  25. C. Debiez, A. Dervieux, K. Mer, and B. Nkonga, “Computation of unsteady flows with mixed finite volume/finite element upwind methods,” Int. J. Numer. Method Fluids 27, 193–206 (1998).

    Article  MathSciNet  Google Scholar 

  26. B. Diskin and J.-L. Thomas, “Notes on accuracy of finite-volume discretization schemes on irregular grids,” Appl. Numer. Math. 60, 224–226 (2010).

    Article  MathSciNet  Google Scholar 

  27. P. A. Bakhvalov, “On the order of accuracy of edge-based schemes on meshes of a special type,” KIAM Preprint No. 79 (Keldysh Inst. Appl. Math. RAS, Moscow, 2017).

    Google Scholar 

  28. H. Nishikawa, “Divergence formulation of source term,” J. Comput. Phys. 231, 6393–6400 (2012).

    Article  MathSciNet  Google Scholar 

  29. L. G. Loitsyansky, Mechanics of Liquids and Gases (Gostekhizdat, Moscow, Leningrad, 1950; Pergamon, Oxford, UK, 1966).

  30. E. Turkel, “Preconditioning techniques in computational fluid dynamics,” Ann. Rev. Fluid Mech. 31, 385–416 (1999).

    Article  MathSciNet  Google Scholar 

  31. H. Guillard and C. Viozat, “On the behaviour of upwind schemes in the low Mach number limit,” Comput. Fluids 28, 63–86 (1999).

    Article  MathSciNet  Google Scholar 

  32. S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Theory of Concentrated Vortices (Inst. Teplofiz. SO RAN, Novosibirsk, 2003; Springer, Berlin, Heidelberg, 2007).

  33. C. Geuzaine and J.-F. Remacle, Gmsh: A Three-Dimensional Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities (1997). http://gmsh.info/.

  34. P. A. Bakhvalov, “Unsteady corrector method for accuracy analysis of linear semidiscrete schemes,” KIAM Preprint No. 123 (Keldysh Inst. Appl. Math. RAS, Moscow, 2018).

    Google Scholar 

  35. P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks,” J. Comput. Phys. 54, 115–173 (1984).

    Article  MathSciNet  Google Scholar 

  36. I. Y. Tagirova and A. V. Rodionov, “Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes,” Mat. Model. 27 (10), 47–64 (2015).

    MathSciNet  MATH  Google Scholar 

  37. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, and T. K. Kozubskaia, “Parallel research code NOISEtte for large-scale CFD and CAA simulations,” Vychisl. Metody Programmir. 13, 110–125 (2012).

    Google Scholar 

Download references

Funding

This paper was prepared as part of project no. 16-31-60 072 mol-a-dk of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Bakhvalov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Kartvelishvili

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhvalov, P.A. On Calculating a Gradient in the Flux Correction Method. Math Models Comput Simul 12, 12–26 (2020). https://doi.org/10.1134/S2070048220010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048220010020

Keywords:

Navigation