Skip to main content
Log in

Discriminating low-dimensional chaos from randomness: A parametric time series modelling approach

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

A procedure for forecasting and, more in general, for making statistical inference about the degree of predictability of dynamical systems given by experimental time series is presented. A parametric time series modelling approach is taken, yielding a powerful technique for analysing the structure of a given signal. The approach we propose consists in fitting autoregressive processes to the data and forecasting future values of the system on the basis of the model selected. We distinguish between two possible forecasting techniques of a dynamical system given by experimental series of observations. The «global autoregressive approximation» views the observations as a realization of a stochastic process, the autoregression coefficients are estimated by best-fitting the model to all the data at once. The «local autoregressive approximation» views the observations as realizations of a truly deterministic process and the autoregression coefficients are continuously updated by using the nearest neighbours of the current state. Then, a proper comparison between the predictive skills of the two techniques allows us to gain insight into distinguishing low-dimensional chaos from randomness. The global procedure also gives adaptive spectral filters (all-poles filters) which are able to pick the dominant oscillations of the system. As an example of the application of the procedure the author considers the Henon map and stochastic processes as well (autoregressive moving average processes). The effects of additional noise (e.g. measurement errors) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Shaw:Z. Naturforsch A,36, 80 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A. Wolf andJ. A. Vastano:Intermediate length scale effects in Lyapunov exponent estimation, inDimensions and Entropies in Chaotic Systems, edited byG. Mayer-Kress (Springer-Verlag, Berlin, 1986), p. 94.

    Chapter  Google Scholar 

  3. J. A. Vastano andE. J. Kostelich:Comparison of algorithms for determining Lyapunov exponents from experimental data, inDimensions and Entropies in Chaotic Systems, edited byG. Mayer-Kress (Springer-Verlag, Berlin, 1986), p. 100.

    Chapter  Google Scholar 

  4. A. Wolf, J. B. Swift, H. L. Swinney andJ. A. Vastano:Physica D,16, 285 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. P. Eckmann andD. Ruelle:Rev. Mod. Phys.,57, 617 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. P. Grassberger andI. Procaccia:Physica D,9, 189 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P. Grassberger andI. Procaccia:Phys. Rev. Lett.,50, 346 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Grassberger andI. Procaccia:Physica D,13, 34 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. R. Osborne andA. Provenzale:Physica D,135, 357 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  10. J. D. Farmer andJ. J. Sidorowich:Phys. Rev. Lett.,59, 845 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Casdagli:Physica D,35, 335 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. C. Serio:Statistical Analysis of Chaotic Signals: A Parametric Time Series Modeling Approach, Technical Report No. 54/89 IAM/CNR (1989), p. 46.

  13. J. P. Burg:A new analysis tecnique for time series data, reprinted inModern Spectrum Analysis, edited byD. G. Childers (IEEE Press, New York, N.Y., 1978), p. 42.

    Google Scholar 

  14. E. Parzen:Multiple time series modeling, inMultivariate Analysis II (Academic Press, New York, N.Y., 1969).

    Google Scholar 

  15. Y. Aizawa:Prog. Theor. Phys.,68, 64 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A. Rabinovitch andR. Thieberger:Physica D,28, 409 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S. M. Kay andS. L. Marple jr.:Proc. IEEE,69, 1380 (1981).

    Article  ADS  Google Scholar 

  18. G. E. P. Box andG. M. Jenkins:Time Series Analysis (Holden-Day, S. Francisco, Cal., 1976).

    MATH  Google Scholar 

  19. H. Akaike:IEEE Trans. Autom. Control.,19, 716 (1974).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. M. S. Bartlett:An Introduction to Stochastic Processes, with Special Reference to Methods and Applications (Cambridge University Press, Cambridge, (1955).

    MATH  Google Scholar 

  21. U. Amato, A. Andretta, B. Bartoli, B. Coluzzi, V. Cuomo andC. Serio:Nuovo Cimento C,8, 248 (1985).

    Article  ADS  Google Scholar 

  22. V. Cuomo andC. Serio:On the use of Markov processes to model climatological variables: theory and applications, inPhysical Climatology for Solar and Wind Energy, edited byR. Guzzi andC. G. Justus (World Scientific, Singapore, 1988), p. 815.

    Google Scholar 

  23. U. Amato, V. Cuomo, F. Fontana andC. Serio:J. Appl. Meteor.,28, 711 (1989).

    Article  ADS  Google Scholar 

  24. A. Papoulis:Probability, Random Variables and Stochastic Processes (McGraw Hill, New York, N.Y., 1965).

    MATH  Google Scholar 

  25. H. Haken:Advanced Synergetics (Springer-Verlag, Berlin, 1983).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serio, C. Discriminating low-dimensional chaos from randomness: A parametric time series modelling approach. Nuov Cim B 107, 681–701 (1992). https://doi.org/10.1007/BF02723176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723176

PACS

PACS

PACS

Navigation