Skip to main content
Log in

Characteristics of the lipase fromCandida rugosa modified with copolymers of polyoxyethylene derivative and maleic acid anhydride

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The hydrophilic copolymer, polyethylene oxide (PEO) allyl ester-maleic anhydride (MA), copolymer was used to modify the lipase from Candida rugosa. MA, in a functional group, reacts easily with amino acids of lipase. The degree of modification (DM) was varied by changing the weight ratio of copolymer to protein of lipase over the range of 10–120 (w/w). The specific activity decreased as DM increased. At the maximum modification degree of 35%, the modified lipase retained more than 65% of the unmodified native lipase activity. The modified lipase displayed a high stability of activity against temperature and pH. The remaining activity of modified lipase was about 2–4 fold of that of native lipase in the severe pH and temperature condition. Finally, it showed 20% greater reaction of substrate at 10 hr than in the case where native lipase was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benjamin, S. and Pandey, A., “Candida rugosa Lipases: Molecular Biology and Versatility in Biotechnology,”Yeast,14, 069 (1998).

    Article  Google Scholar 

  • Borgstrom, B. and Brockman, H. L.,Lipases, Elsevier, New York (1984).

  • Bousquet, M.-P., Willemot, R.-M., Monsan, P. and Boures, E., “Lipasecatalyzed α-Butylglucoside Lactate Synthesis in Organic Solvent for Dermo-cosmetic Application,”J. Biotechnol.,68, 61 (1999).

    Article  CAS  Google Scholar 

  • Chae, H. J., In, M. J. and Kim, E.Y., “Optimization of Protease Immobilization by Covalent Binding Using Glutaraldehyde,”Appl. Biochem. Biotech.,69, 53 (1998).

    Google Scholar 

  • Charusheela, A. and Arvind, L., “Enzyme Catalyzed Hydrolysis of Esters Using Reversibly Soluble Polymer Conjugated Lipases,”Enzy. Mirob. Technol.,30, 19 (2002).

    Article  CAS  Google Scholar 

  • Diamond, A. D. and Hsu, J. T., “Aqueous Two-phase Systems for Biomolecule Separation,”Advances in Biochem. Eng. Biotech.,49, 89 (1992).

    Google Scholar 

  • Dordick, J. S.,Biocatalysis for Industry, Plenum Press, New York (1991).

    Google Scholar 

  • Dossat, V., Combes, D. and Marty, A., “Efficient Lipase Catalyzed Production of a Lubricant and Surfactant Formulation Using a Continuous Solvent-free Process,”J. Biotechnol.,97, 117 (2002).

    Article  CAS  Google Scholar 

  • Eijsink, V.G.H., BjØrk, A., Gåseidnes, S., Sirevåg, R., Synstad, B., Burg, B. denand Vriend, G., “Rational Engineering of Enzyme Stability,”J. Biotechnol.,113, 105 (2004).

    Article  CAS  Google Scholar 

  • Furukawa, M., Kodera, Y., Uemura, T., Hiroto, M., Matsushima, A., Kuno, H., Matsushita, H. and Inada, Y., “Alcoholysis of ε-Decalactone with Polyethylene Glycol-Modified Lipase in 1,1,1-Trichloroethane,”Biochem. and Biophys. Res. Commun.,199, 41 (1996).

    Article  Google Scholar 

  • Goto, M., Kamiya, N., Miyata, M. and Nakashio, F., “Enzymatic Esterification by Surfactant-coated Lipase in Organic Media,”Biotechnol. Prog.,10, 263 (1994).

    Article  CAS  Google Scholar 

  • Guo, Z. and Sun, Y., “Characteristics of Immobilized Lipase on Hydrophobic Superparamagnetic Microspheres to Catalyze Esterification,”Biotechnol Prog.,20, 500 (2004).

    Article  CAS  Google Scholar 

  • Habeeb, A. F. S. F., “Determination of Free Amino Groups in Protein by Tri-nitrobenzene Sulfonic Acid,”Anal. Biochem.,14, 328 (1966).

    Article  CAS  Google Scholar 

  • Jaeger, K. and Reetz, M., “Microbial Lipase Form Versatile Tools for Biotechnology,”Trends Biotechnol.,16, 396 (1998).

    Article  CAS  Google Scholar 

  • Jeon, G. J., Hur, B. K. and Yang, J.W., “Hydrolysis of Castor Oil with Lipases and Organic Solvents,”Korean J. Biotechnol. Bioeng.,14, 696 (1999).

    Google Scholar 

  • Jensen, R.G., “Detection and Determination of Lipase (Acylglycerol Hydrolase) Activity from Various Sources,”Lipids,18, 650 (1983).

    Article  CAS  Google Scholar 

  • Joo, H., Yoo, Y. J. and Dordick, J. S., “Polymers from Biocatalysts,”Korean J. Chem. Eng.,15, 362 (1998).

    Article  CAS  Google Scholar 

  • Kim, B.G. and Choi, C.Y., “A Study on Ethanol Production by Immobilized Cells of Zymomonas Mobilis,”Korean J. Chem. Eng.,1, 13 (1984).

    Article  Google Scholar 

  • Kim, Y. S., Lee, H. J., Jang, S. K., Park, K. N., Park, J.W. and Maken, S., “Purification of Native and Modified Enzymes Using a Reactive Aqueous Two-phase System,”J. Ind. Eng. Chem.,10, 384 (2004).

    CAS  Google Scholar 

  • Koeller, K.M. and Wong, C.-H., “Enzymes for Chemical Synthesis,”Nature,409, 232 (2001).

    Article  CAS  Google Scholar 

  • Kontkanen, H., Tenkanen, M., Fagerström, R. and Reinikainen, T., “Characterisation of Steryl Esterase Activities in Commercial Lipase Preparations,”J. Biotechnol.,108, 51 (2004).

    Article  CAS  Google Scholar 

  • Kwon, D.Y. and Rhee, J. S., “Immobilization of Lipase for Fat Splitting,”Korean J. Chem. Eng.,1, 153 (1984).

    Article  CAS  Google Scholar 

  • Lee, S. K., Park, S.W., Kim, Y. I., Chang, K. H., Hong, H. I. and Kim, S.W., “Immobilization of GL-7-ACA Acylase for the Production of 7-ACA,”Korean J. Chem. Eng.,19, 261 (2002).

    Article  CAS  Google Scholar 

  • Longo, M.A. and Combes, D., “Thermostability of Modified Enzymes: A Detailed Study,”J. Chem. Technol. Biotechnol.,74, 25 (1999).

    Article  CAS  Google Scholar 

  • Matsumoto, M., Kida, K. and Kondo, K., “Enhanced Activities of Lipase Pretreated with Organic Solvents,”J. Chem. Technol. Biotechnol.,76, 070 (2001).

    Article  Google Scholar 

  • Moon, H.Y. and Park, J.W., “Reactive Aqueous Two-phase Partition of Cellulose,”Korean J. Chem. Eng.,10, 235 (1993).

    Article  CAS  Google Scholar 

  • Nishio, T., Takahashi, K., Tsuzuki, T., Yoshimoto, T., Kodera, Y., Matsushima, A., Saito, Y. and Inada, Y., “Ester Synthesis in Benzene by Polyethylene Glycol-modified Lipase from Pseudomonas Fragi 22.39B,”J. Biotechnol.,8, 39 (1988).

    Article  CAS  Google Scholar 

  • Noel, M. and Combes, D., “Effects of Temperature and Pressure on Rhizomucor miehei Lipase Stability,”J. Biotechnol.,102, 23 (2003).

    Article  CAS  Google Scholar 

  • Park, C.Y., Ryu, Y.W. and Kim, C., “Kinetics and Rate of Enzymatic Hydrolysis of Cellulose in Supercritical Carbon Dioxide,”Korean J. Chem. Eng.,18, 475 (2001a).

    Article  CAS  Google Scholar 

  • Park, K. N. and Park, J.W., “Modification of Cellulose by Synthesized Copolymer with Polyethylene Oxide and Malic Acid Anhydride,”J. Applied Polymer Science,77, 368 (2000).

    Article  CAS  Google Scholar 

  • Park, J.W. and Park, K.N., “Biological De-inking of Waste Paper Using Modified Cellulose with Polyoxyethylene,”Biotechnology Techniques.,13, 49 (1999).

    Article  CAS  Google Scholar 

  • Park, J.W., “Chracteristics of Cellulase Modified with Amphiphilic Copolymer in Organic Solvent,”Korean J. Chem. Eng.,12, 523 (1995).

    Article  CAS  Google Scholar 

  • Park, J.W. and Park, K. N., “Improvement of the Physical Properties of Reprocessed Paper by Using Biological Treatment with Modified Cellulose,” Bioresource Technol.,79, 91 (2001).

  • Park, J.W., Park, K. N., Song, H. C. and Shin, H. C., “Saccharification and Adsoption Characteristics of Modified Cellulases with Hydrophilic/ Hydrophobic Copolymers,”J. Biotechnol.,93, 203 (2002).

    Article  CAS  Google Scholar 

  • Park, K. N. and Park, J.W., “Biological Reprocessing of Mixed Office Waste Using Modified Cellulase by Production of Functional Copolymer,”Korean J. Chem. Eng.,19, 285 (2002).

    Article  CAS  Google Scholar 

  • Park, S.W., Kim, Y. I., Chang, K. S. and Kim, S.W., “Improvement of Stability of Immobilized GL-7-ACA Acylase through Modification Glutaraldehyde,”Process Biochem.,37/2, 153 (2001b).

    Article  Google Scholar 

  • Reetz, M. T., “Lipases as Practical Biocatalysts,”Curr. Opin. Chem. Biol.,6, 145 (2002).

    Article  CAS  Google Scholar 

  • Schmid, A., Dordick, J. S., Hauer, B., Wubbolts, M. and Witholt, B., “Industrial Biocatalysis Today and Tomorrow,”Nature,409, 58 (2001).

    Article  Google Scholar 

  • Wu, J. C. and Song, B. D., “Esterification Reactions Catalyzed by Surfactantcoated Candida rugosa Lipase in Organic Solvents,”Process Biochem.,37, 229 (2002).

    Article  Google Scholar 

  • Wu, Y. X., Jaaskelainen, S. and Linko, Y.Y., “An Investigation of Crude Lipases for Hydrolysis, Esterification and Transesterification,”Enzyme Microb. Technol.,19, 226 (1996).

    Article  CAS  Google Scholar 

  • Wu, Z. C., He, Z.M., Yao, C.Y. and Yu, K. T., “Increased Activity and Stability of Candida rugosa Lipase in Reverse Micelles Formed by Chemically Modified AOT in Isooctane,”J. Chem. Technol. Biotechnol.,76, 949 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K., Kim, H., Maken, S. et al. Characteristics of the lipase fromCandida rugosa modified with copolymers of polyoxyethylene derivative and maleic acid anhydride. Korean J. Chem. Eng. 22, 412–417 (2005). https://doi.org/10.1007/BF02719420

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02719420

Key words

Navigation