Skip to main content
Log in

Effect of aluminum inhalation on alveolar phospholipid profiles in experimental silicosis

  • Published:
Lung Aims and scope Submit manuscript

Abstract

In the sheep tracheal lobe model of silicosis, we have recently reported that total phospholipid, lecithin, and phosphatidylglycerol levels were elevated in lung lavage. To investigate further this observation, we obtained complete phospholipid profiles of lung lavage in 10 sheep exposed to saline only (Sa group), 10 sheep exposed to aluminum lactate inhalation only (Al group), 10 sheep exposed to 100 mg Minusil-5 in saline followed by monthly saline inhalation (Si group), and 10 sheep exposed to 100 mg Minusil-5 in saline followed by monthly aluminum lactate inhalation (Si-Al group). The following phospholipid components were measured: total phospholipids, phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine, disaturated phosphatidylcholine, sphingomyelin, and lyso-phosphatidylcholine. All values were comparable in the Sa group, Al group, and Si-Al group. In the Si group, there was a significant increase in total phospholipid to approximately 200% of the control values. The phospholipid profile of this group demonstrated an increase in all of the phospholipid components with some enrichment of the fraction of PG, PE, and PI. We concluded that lung exposure to silica dust significantly increases the concentration of phospholipids in the alveoli. This increase is of a large spectrum of alveolar phospholipids and is completely suppressed by aluminum lactate inhalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anner B, Moosmayer M (1975) Rapid determination of inorganic phosphate in biological systems by a highly sensitive photometric method. Anal Biochem 65:305–309

    Article  PubMed  CAS  Google Scholar 

  2. Baily P, Kilroe-Smith TA, Harington JS (1963) Some lipid constituents of normal and quartz-dusted guinea pig lungs. Nature 198:856–857

    Article  CAS  Google Scholar 

  3. Bartlett G (1959) Phosphorus assay in column chromatography. J Bio Chem 234:466–468

    CAS  Google Scholar 

  4. Bégin R, Massé S, Rola-Pleszczynski M, Drapeau G, Dalle D (1985) Selective exposure and analysis of the sheep tracheal lobe as a model for toxicological studies of respirable particles. Environ Res 36:389–404

    Article  PubMed  Google Scholar 

  5. Bégin R, Bisson G, Boileau R, Massé S (1986a) Assessment of disease activity by Ga-67 lung scan and lung lavage in the pneumoconioses. Semin Respir Med 7:214–224

    Article  Google Scholar 

  6. Bégin R, Massé S, Rola-Pleszczynski M, Martel M, Desmarais Y, Geoffroy M, LeBouffant L, Daniel H, Martin J (1986b) Aluminum lactate treatment alters the lung biological activity of quartz. Exp Lung Res 10:385–399

    PubMed  Google Scholar 

  7. Bégin R, Massé S, Martel M, Bossé J, Dubois F, Geoffroy M, Labbé J (1987a) Sustained efficacy of aluminum to reduce quartz toxicity in the lung. Exp Lung Res 13:205–222

    PubMed  Google Scholar 

  8. Bégin R, Massé S, Sébastien P, Martel M, Geoffroy M, Labbé J (1987b) Late aluminum therapy reduces the cellular activities of simple silicosis in the sheep model. J Leuk Biol 41:400–406

    Google Scholar 

  9. Bégin R, Cantin A, Boileau R, Bisson G (1987c) Spectrum of alveolitis in quartz-exposed human subjects. Chest 92:1061–1067

    PubMed  Google Scholar 

  10. Calhoun WJ, Christman JW, Ershler WB, Graham GB, Davis GS (1986) Elevated immunoglobulins in the lavage fluid of healthy granite workers. Thorax 41:766–773

    Google Scholar 

  11. Casarett-Bruce M, Camner P, Curstedt T (1980) Influence of chronic inhalation exposure to nickel dust on accumulation of lung lipids. In: Sanders CL, Cross FT, Dagle GE, Mahaffey JA (eds) Pulmonary toxicology of respirable particles. Technical Information Center, U.S. Department of Energy, Springfield, VA, pp 357–366

    Google Scholar 

  12. Casarett-Bruce M, Camner P, Curstedt T (1981) Changes in pulmonary lipid composition of rabbits exposed to nickel dust. Environ Res 26:353–362

    Article  PubMed  CAS  Google Scholar 

  13. Christman JW, Emerson RJ, Graham WGB, Davis GS (1985) Mineral dust and cell recovery from the bronchoalveolar lavage of healthy Vermont granite workers. Am Rev Respir Dis 132:393–399

    PubMed  CAS  Google Scholar 

  14. Dethloff LA, Gilmore LB, Brody AR, Hook GER (1986) Induction of intra- and extra-cellular phospholipids in the lungs of rats exposed to silica. Biochem J 233:111–118

    PubMed  CAS  Google Scholar 

  15. Dubois F, Bégin R, Cantin A, Massé S, Martel M, Bilodeau G, Dufresne A, Perrault G, Sébastien P (1988) Aluminum inhalation reduces silicosis in a sheep model. Am Rev Respir Dis 137:1172–1179

    PubMed  CAS  Google Scholar 

  16. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  17. Gabor S, Zugravu E, Kovàts A, Böhm B, Andrasoni D (1978) Effects of quartz on lung surfactant. Environ Res 16:443–448

    Article  PubMed  CAS  Google Scholar 

  18. Gross NJ (1978) Early physiologic and biochemical effects of thoracic X-irradiation on the pulmonary surfactant system. J Lab Clin Med 91:537–544

    PubMed  CAS  Google Scholar 

  19. Grünspan M, Antweiler H, Dehnen W (1973) Effect of silica on phospholipids in the rat lung. Br J Ind Med 30:74–77

    PubMed  Google Scholar 

  20. Hallman M, Spragg R, Harrell JH, Moser KM, Gluck L (1982) Evidence of lung surfactant abnormality in respiratory failure. J Clin Invest 70:673–683

    Article  PubMed  CAS  Google Scholar 

  21. Heppleston AG (1962) The disposal of dust in the lungs of silicotic rats. Am J Pathol 40:493–503

    PubMed  CAS  Google Scholar 

  22. Heppleston AG, Wright NA, Stewart JA (1970) Experimental alveolar lipo-proteinosis following the inhalation of silica. J Pathol 101:293–307

    Article  PubMed  CAS  Google Scholar 

  23. Heppleston AG, Fletcher K, Wyatt I (1972) Abnormalities of lung lipids following inhalation of quartz. Experientia 28:938–939

    Article  PubMed  CAS  Google Scholar 

  24. Heppleston AG, Fletcher K, Wyatt I (1974) Changes in the composition of lung lipids and the “turnover” of dipalmitoyl lecithin in experimental alveolar lipo-proteinosis induced by inhaled quartz. Br J Exp Pathol 55:384–395

    PubMed  CAS  Google Scholar 

  25. Heppleston AG, McDermott M, Collins MM (1975) The surface properties of the lung in rats with alveolar lipo-proteinosis. Br J Exp Pathol 56:444–453

    PubMed  CAS  Google Scholar 

  26. Low RB, Davis GS, Bell DY, Giancola MS, Vacek PM (1987) Lipids in bronchoalveolar lavage fluid from patients with sarcoidosis. Thorax 42:926–932

    Article  PubMed  CAS  Google Scholar 

  27. Marks GS, Marasas LW (1960) Changes in the lung lipids of rabbits and guinea-pigs exposed to the inhalation of silica dust. Br J Ind Med 17:31–35

    PubMed  CAS  Google Scholar 

  28. Martin TR, Chi EY, Covert DS, Hodson WA, Kessler DE, Moore WE, Altman LC, Butler J (1983) Comparative effects of inhaled volcanic ash and quartz in rats. Am Rev Respir Dis 128:144–152

    PubMed  CAS  Google Scholar 

  29. Naimark A, Newman D, Bowden DH (1970) Effect of radiation on lecithin metabolism, surface activity, and compliance of rat lung. Can J Physiol Pharmacol 48:685–694

    PubMed  CAS  Google Scholar 

  30. Parkes WR (1982) Occupational lung disorders, 2nd ed. Butterworth & Co Ltd. London

    Google Scholar 

  31. Richards R, Hunt J, George G (1983) Pulmonary surfactant and mineral-induced diseases. In: Cosmi EV, Scarpelli EM (eds) Pulmonary surfactant system. Elsevier Science Publishers, New York, 287–296

    Google Scholar 

  32. Richards RJ, Lewis R (1985) Surfactant changes in experimentally induced disease. Biochem Soc Trans 13:1084–1087

    PubMed  CAS  Google Scholar 

  33. Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5:494–496

    Article  PubMed  CAS  Google Scholar 

  34. Rubin P, Shapiro DL, Finklestein JN, Penney DP (1980) The early release of surfactant following lung irradiation of alveolar type II cells. Int J Radiat Oncol Biol Phys 6:75–77

    PubMed  CAS  Google Scholar 

  35. Sheehan PM, Stokes DC, Yeh YY, Hughes WT (1986) Surfactant phospholipids and lavage phospholipase A2 in experimental pneumocystis carinii pneumonia. Am Rev Respir Dis 134:526–531

    PubMed  CAS  Google Scholar 

  36. Snedecor GW, Cochran WC (1967) Statistical methods. Iowa State University Press, Ames, IA

    Google Scholar 

  37. Sparling JW, Hook GEW (1979) Phospholipid exchange between subcellular organelles of rabbit lung. Lipids 14:606–613

    Article  Google Scholar 

  38. Thrall RS, Swendsen CL, Shannon TH, Kennedy CA, Frederick DS, Grunze MF, Sulavik SB (1987) Correlation of changes in pulmonary surfactant phospholipids with compliance in bleomycin-induced pulmonary fibrosis in the rat. Am Rev Respir Dis 136:113–118

    PubMed  CAS  Google Scholar 

  39. Vigliani ER, Pernis B (1958) Immunological factors in the pathogenesis of the hyaline tissue of silicosis. Br J Ind Med 15:8–14

    PubMed  CAS  Google Scholar 

  40. Wicbert P Von (1971) Bezichungen zwischen pathologischen veränderungen und phospholipidgehalt der menschlichen lunge. Pneumonologie 144:201–205

    Article  Google Scholar 

  41. Yu S, Harding PGR, Smith N, Possmayer F (1983) Bovine pulmonary surfactant: chemical composition and physical properties. Lipids 18:522–529

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bégin, R., Possmayer, F., Ormseth, M.A. et al. Effect of aluminum inhalation on alveolar phospholipid profiles in experimental silicosis. Lung 167, 107–115 (1989). https://doi.org/10.1007/BF02714937

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714937

Key words

Navigation