Skip to main content
Log in

The use of fibrous ion exchangers in gold hydrometallurgy

  • Research Summary
  • Ion Exchange
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20–40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Gasparrini,CIM Bull, 76 (851) (1993), p. 141.

    Google Scholar 

  2. M.B. Moiman,Au and Ag Heap and Dump Leaching Practice, ed. J.B. Hiskey (Littleton, CO: SME, 1984), p. 108.

    Google Scholar 

  3. B.R. Green,Mintek50-Proceedings of the International Conference on Mineral Science and Technology, ed. L.-F. Haughton (Johannesburg, South Africa: Mintek, 1985), Vol. 2, p. 627.

    Google Scholar 

  4. M.D. Adams,Hydrometallurgy, 26 (1991), p. 201.

    Article  CAS  Google Scholar 

  5. P.D. Favell et al.,React. Polym., 18 (1992), p. 57.

    Article  Google Scholar 

  6. W.I. Harris et al.,React Polym., 17(1992), p. 21.

    Article  CAS  Google Scholar 

  7. C.F. Vernon et al.,React. Polym., 18 (1992) p. 35.

    Article  CAS  Google Scholar 

  8. M.J. Virning and G.A. Wolfe,Proc. Int. Solvent Extraction Conference, ISEC96 (Melbourne, Australia: The University of Melbourne, 1996), vol. 1, p. 311.

    Google Scholar 

  9. A. Warshawsky et al.,Macromolecular Material Engineering, 283 (2000), p. 103.

    Article  CAS  Google Scholar 

  10. A. Warshawsky et al.,Macromolecular Material Engineering, 286 (2001), p. 285.

    Article  CAS  Google Scholar 

  11. V. Soldatov et al.,J Appl. Chem. (Russ.) 67 (1994), p. 1644.

    CAS  Google Scholar 

  12. V. Soldatov et al.,Environmental Science Res., V. 51, Chemistry for the Protection of the Environment, v. 2, ed. L Pawlowski, W. J. Lacy, and M. Dudzinska (New York-London: Plenum Press, (1996), p. 107.

    Google Scholar 

  13. V. Soldatov et al.,Reactive Polymers, 7 (1988), p. 159.

    CAS  Google Scholar 

  14. J. Marsden and I. House,The Chemistry of Gold Extraction (New York: Ellis Horwood, 1992).

    Google Scholar 

  15. C.A. Fleming,EPD Congress 1998, ed. B. Mishra (Warrendale, PA: TMS, 1998), pp. 95–117.

    Google Scholar 

  16. B.R. Gren et al.,EPD Congress 1998, ed. B. Mishra (Warrendale, PA: TMS, 1998), pp. 119–136.

    Google Scholar 

  17. B.D. Young et al.,Hydrometallurgy, 29 (1991), p. 151.

    Article  Google Scholar 

  18. M.R. Davis et al. (Paper presented at the Alta Copper Hydrometallurgical Forum, Brisbane, Australia, 1998).

  19. V.A. Leao et al.,JOM, 50 (10) (1998), p. 71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kautzmann, R.M., Sampaio, C.H., Cortina, J.L. et al. The use of fibrous ion exchangers in gold hydrometallurgy. JOM 54, 47–51 (2002). https://doi.org/10.1007/BF02709222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02709222

Keywords

Navigation