Skip to main content
Log in

Nanostructured ceramic and hybrid materials via electrodeposition

  • Overview
  • Nanomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electrodeposition is unique in that it can be used for processing metals, ceramics, and polymers. Electrochemical strategies offer important advantages and unique possibilities in the development of nanomaterials and nanostructures. Novel electrodeposition methods have evolved into an important branch of nanotechnology. This paper presents a brief overview of recent developments in the application of electrochemical methods for synthesis of nanostructured ceramic and hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S.J. Gani, “Electrophoretic Deposition—A Review,”Industrial Ceramics, 14 (1994), p. 163.

    Google Scholar 

  2. 0. Vander Biest and L.J. Vandeperre, “Electrophoretic Deposition of Materials,”Annu. Rev. Mater. Sci., 29 (1999), p. 327.

    Article  Google Scholar 

  3. I. Zhitomirsky and L. Gal-Or, “Electrochemical Coatings,”Intermetallic and Ceramic Coatings, ed. Narendra B. Dahotre and T.S. Sudarshan (New York: Marcel Dekker, 1999), pp. 83–145.

    Google Scholar 

  4. G.H.A. Therese and P.V. Kamath, “Electrochemical Synthesis of Metal Oxides and Hydroxides,”Chem. Mater., 12 (2000), p. 1195.

    Article  CAS  Google Scholar 

  5. I. Zhitomirsky, “New Developments in Electrolytic Deposition of Ceramic Films,”Amer. Ceram. Soc. Bull., 79 (2000), p. 57.

    CAS  Google Scholar 

  6. I. Zhitomirsky, “Electrophoretic and Electrolytic Deposition of Ceramic Coatings on Carbon Fibers,”J. Europ. Ceram. Soc., 18 (1998), p. 849.

    Article  CAS  Google Scholar 

  7. I. Zhitomirsky, “Ceramic Films Using Cathodic Electrodeposition,”JOM-e, 52 (2000), www.tms.org/pubs/journals/ JOM/0001/Zhitomirsky/Zhitomirsky-0001 .html.

  8. I. Zhitomirsky and L. Gal-Or, “Electrophoretic Deposition of Hydroxyapatite,”J. Mater. Sci.:Mater. Med., 8 (1997), p. 213.

    Article  CAS  Google Scholar 

  9. I. Zhitomirsky, “Electrophoretic Hydroxyapatite Coatings and Fibers,”Mater. Lett., 42 (2000), p. 262.

    Article  CAS  Google Scholar 

  10. M. Shirkhanzadeh, “Direct Formation of Nanophase Hydroxyapatite on Cathodically Polarized Electrodes,”J. Mater. Sci., 9 (1998), p. 67.

    Article  CAS  Google Scholar 

  11. E.M. Wong and P.C. Searson, “Kinetics of Electrophoretic Deposition of Zinc Oxide Quantum Particle Thin Films,”Chem. Mater., 11 (1999), p. 1959.

    Article  CAS  Google Scholar 

  12. M. lzaki and T. Omi, “Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reaction,”J. Electrochem. Soc., 144 (1997), p. 1949.

    Article  Google Scholar 

  13. S. Peulon and D. Lincot, “Cathodic Electrodeposition from Aqueous Solution of Dense or Open-Structured Zinc Oxide Films,”Adv, Mater., 8 (1996), p. 166.

    Article  CAS  Google Scholar 

  14. R. Liu et al., “Epitaxial Electrodeposition of Zinc Oxide Nanopillars on Single-Crystal Gold,”Chem. Mater., 13 (2001), p. 508.

    Article  CAS  Google Scholar 

  15. I. Zhitomirsky et al., “Electrodeposition of Ceramic Films from Non-Aqueous and Mixed Solutions,”J. Mater. Sci., 30 (1995), p. 5307.

    Article  CAS  Google Scholar 

  16. I. Zhitomirsky, “Cathodic Electrosynthesis of Titania Films and Powders,”Nanostructured Materials, 8 (1997), p. 521.

    Article  CAS  Google Scholar 

  17. I. Zhitomirsky and L. Gal-Or, “Cathodic Electrosynthesis of Ceramic Deposits,”J. Europ. Ceram. Soc., 16 (1996), p. 819.

    Article  CAS  Google Scholar 

  18. Y. Ishikawa and Y Matsumoto, “Electrodeposition of TiO2 Photocatalyst into Nano-Pores of Hard Alumite,”Electrochimica Acta, 46 (2001), p. 2819.

    Article  CAS  Google Scholar 

  19. E.W. Bohannan et al., “Low-Temperature Electrodeposition of the High-Temperature Cubic Polymorph of Bismuth (III) Oxide,”Solid State Ionics, 131 (2000), p. 97.

    Article  CAS  Google Scholar 

  20. J. Tamaki, G.K.L. Goh, and F.F. Lange, “Novel Epitaxial Growth of Barium Titanate Thin Films by Electrodeposition,”J. Mater. Res., 15 (2000), p. 2583.

    CAS  Google Scholar 

  21. I. Zhitomirsky and L. Gal-Or, “Ruthenium Oxide Deposits Prepared by Cathodic Electrosynthesis,”Mater. Lett., 31 (1997), p. 155.

    Article  CAS  Google Scholar 

  22. I. Zhitomirsky, “Electrolytic Deposition of Oxide Films in the Presence of Hydrogen Peroxide,”J. Europ. Ceram. Soc., 19 (1999), p. 2581.

    Article  CAS  Google Scholar 

  23. S.J. Limmer et al., “Template-Based Growth of Various Oxide Nanorods by Sol-Gel Electrophoresis,”Adv. Fund. Mater., 12 (2002), p. 59.

    Article  CAS  Google Scholar 

  24. R. Chaim, I. Silberman, and L. Gal-Or, “Electrolytic ZrO2 Coatings II: Microstructural Aspects,”J. Electrochem. Soc., 138 (1991), p. 1942.

    Article  CAS  Google Scholar 

  25. I. Zhitomirsky and L. Gal-Or, “Characterization of Zirconium, Lanthanum and Lead Oxide Deposits Prepared by Cathodic Electrosynthesis,”J. Mater. Sci., 33 (1998), p. 699.

    Article  CAS  Google Scholar 

  26. A.R. Boccaccini, U. Schindler, and H.-G. Krüger, “Ceramic Coatings on Carbon and Metallic Fibres by Electrophoretic Deposition,”Mater. Lett, 51 (2001), p. 225.

    Article  CAS  Google Scholar 

  27. L. Gal-Or, S. Liubovich, and S. Haber, “Deep Electrophoretic Penetration and Deposition of Ceramic Particles Inside Porous Substrates II: Experimental Model,”J. Electrochem. Soc., 139 (1992), p. 1078.

    Article  CAS  Google Scholar 

  28. A.R. Boccaccini et al., “Colloidal Processing of a Mullite Matrix Material Suitable for Infiltrating Woven Fibre Preforms Using Electrophoretic Deposition,”J. Europ. Ceram. Soc., 16 (1996), p. 1319.

    Article  CAS  Google Scholar 

  29. A.R. Boccaccini and P.A. Trusty, “Electrophoretic Deposition Infiltration of Metallic Fabrics with a Boehmite Sol for the Preparation of Ductile-Phase-Toughened Ceramic Composites,”J. Mater. Sci., 33 (1998), p. 933.

    Article  CAS  Google Scholar 

  30. C. Kaya, A.R. Boccaccini, and K.K. Chawla, “Electrophoretic Deposition Forming of Nickel-Coated-Carbon-Fiber-Reinforced Borosilicate-Glass-Matrix Composites,”J. Amer. Ceram. Soc., 83 (2000), p. 1885.

    Article  CAS  Google Scholar 

  31. P.E. de Jongh, D. Vanmaekelbergh, and J.J. Kelly, “Cu2O: Electrodeposition and Characterization,”Chem. Mater., 11 (1999), p. 3512.

    Article  Google Scholar 

  32. Z.-Z. Gu et al., “Fabrication of Structured Porous Film by Electrophoresis,”J. Amer. Chem. Soc., 123 (2001), p. 175.

    Article  CAS  Google Scholar 

  33. T. Sumida et al., “Macroporous ZnO Films Electrochemically Prepared by Templating of Opal Films,”Chem. Lett, (2001), p. 38.

  34. B. O’Regan, V. Sklover, and M. GrÄtzel, “Electrochemical Deposition of Smooth and Homogeneously Mesoporous ZnO Films from Propylene Carbonate Electrolytes,”J. Electrochem. Soc., 148 (2001), p. C498.

    Article  CAS  Google Scholar 

  35. J.A. Switzer, M.J. Shane, and R.J. Phillips, “Electrodeposited Ceramic Superlattices,”Science, 247 (1990), p. 444.

    Article  CAS  Google Scholar 

  36. J.A. Switzer et al., “Scanning Tunneling Microscopy of Electrodeposited Ceramic Superlattices,”Science, 258 (1992), p. 1918.

    Article  CAS  Google Scholar 

  37. R.J. Phillips et al., “Electrodeposition of Textured Ceramic Superlattices in the Pb-TI-0 System,”Chem. Mater., 9 (1997), p. 1670.

    Article  CAS  Google Scholar 

  38. J.A. Switzer et al., “Electrodeposited Defect Chemistry Superlattices,”Science, 264 (1994), p. 1573.

    Article  CAS  Google Scholar 

  39. Y-C. Wang, I.-C. Leu, and M.-H. Hon, “Preparation of Nanosized ZnO Arrays by Electrophoretic Deposition,”Electrochem. Solid-State Lett, 5 (2002), p. C53.

    Article  CAS  Google Scholar 

  40. X. Zhang et al., “Electrochemical Fabrication of Single-Crystalline Anatase TiO2 Nanowire Arrays,”J. Electrochem. Soc., 148 (2001), p. G398.

    Article  CAS  Google Scholar 

  41. R. Chaim, “Fabrication and Characterization of Nanocrystalline Oxides by Crystallization of Amorphous Precursors,”Nanostructured Materials, 1 (1992), p. 479.

    Article  CAS  Google Scholar 

  42. Y. Zhou, R.J. Phillips, and J.A. Switzer, “Electrochemical Synthesis and Sintering of Nanocrystalline Cerium (IV) Oxide Powders,”J. Amer. Ceram. Soc., 78 (1995), p. 981.

    Article  CAS  Google Scholar 

  43. A. Mukherjee, D. Harrison, and E.J. Podlaha, “Electrosynthesis of Nanocrystalline Ceria-Zirconia,”Electrochem. Solid-State Lett., 4 (2001), p. D5.

    Article  CAS  Google Scholar 

  44. F. Torres et al., “Electrochemical Route for the Synthesis of New Nanostructured Magnetic Mixed Oxides of Mn, Zn, and Fe from an Acidic Chloride and Nitrate Medium,”Chem. Mater., 12 (2000), p. 3060.

    Article  CAS  Google Scholar 

  45. A. Dierstein et al., “Electrochemical Deposition Under Oxidizing Conditions (EDOC): A New Synthesis for Nanocrystalline Metal Oxides,”Scripta Mater., 44 (2001), p. 2209.

    Article  CAS  Google Scholar 

  46. I. Zhitomirsky and A. Petric, “Fabrication of Organoceramic Films by Electrodeposition,”Amer. Ceram. Soc. Bull., 80 (2001), p. 41.

    CAS  Google Scholar 

  47. I. Zhitomirsky and A. Petric, “Cathodic Electrodeposition of Polymer Films and Organoceramic Films,”Mater. Sci. Eng., B78 (2000), p. 125.

    Article  CAS  Google Scholar 

  48. I. Zhitomirsky and A. Petric, “Electrolytic Deposition of Gd2O3 and Organoceramic Composite,”Mater. Lett., 42 (2000), p. 273.

    Article  CAS  Google Scholar 

  49. 1. Zhitomirsky and A. Petric, “Electrolytic Deposition of Zirconia and Zirconia Organoceramic Composites,”Mater. Lett., 46 (2000), p. 1.

    Article  CAS  Google Scholar 

  50. I. Zhitomirsky and A. Petric, “Electrochemical Deposition of Ceria and Doped Ceria Films,”Ceramics International, 27 (2001), p. 149.

    Article  CAS  Google Scholar 

  51. I. Zhitomirsky, M. Niewczas, and A. Petric, “Electrodeposition of Hybrid Organic-Inorganic Films Containing Iron Oxide,”Mater. Lett, in press.

  52. I. Zhitomirsky and A. Petric, “Nanostructured Polymer-Ceramic Films Prepared by Combined Electrolytic-Electrophoretic Deposition,”Proceedings of the International Conference on Electrophoretic Deposition (Banff, Canada: United Engineering Foundation, 2002), submitted.

    Google Scholar 

  53. B. Feng et al., “Electropolymerization of Polyaniline/ Montmorillonite Nanocomposite,”J. Mater. Sci. Lett., 20 (2001), p. 293.

    Article  CAS  Google Scholar 

  54. J.A. Switzer et al., “Potential Oscillations During the Electrochemical Self-Assembly of Copper/Cuprous Oxide Layered Nanostructures,”J. Mater. Res., 13 (1998), p. 909.

    CAS  Google Scholar 

  55. J.A. Switzer et al., “Negative Differential Resistance in Electrochemically Self-Assembled Layered Nanostructures,”J.Phys. Chem., B103 (1999), p. 395.

    Google Scholar 

  56. S. Kenane and L. Piraux, “Electrochemical Self-Assembly of Cu/Cu2O Nanowires,”J. Mater. Res., 17 (2002), p. 401.

    Article  CAS  Google Scholar 

  57. T. Yoshino et al., “Preparation of ZnO/Au Nanocomposite Thin Films by Electrodeposition,”Jpn. J. Appl. Phys., 35 (1996), p. L1512.

    Article  Google Scholar 

  58. P.K. Shen and A.C.C. Tseung, “Anodic Oxidation of Methanol on Pt/WO3 in Acidic Media,”J. Electrochem. Soc., 141 (1994), p. 3082.

    Article  CAS  Google Scholar 

  59. P.M. Vereecken, I. Shao and PC. Searson, “Particle Codeposition in Nanocomposite Films,”J. Electrochem. Soc., 147 (2000), p. 2572.

    Article  CAS  Google Scholar 

  60. S. Banerjee et al., “Magnetic Properties of Oxide-Coated Iron Nanoparticles Synthesized by Electrodeposition,”J. Magn. Magn. Mater., 219 (2000), p. 45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhitomirsky, I., Petric, A. & Niewczas, M. Nanostructured ceramic and hybrid materials via electrodeposition. JOM 54, 31–34 (2002). https://doi.org/10.1007/BF02709090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02709090

Keywords

Navigation