Skip to main content

Nanomaterials through Powder Metallurgy: Production, Processing, and Potential Applications toward Energy and Environment

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Significant progresses in materials science and engineering have developed a novel technology in which materials can be designed and engineered at nanoscale, so-called nanotechnology. Nanomaterials with property being custom-made by nanotechnology have influenced many research and advancement in the field of engineering, science, and technology with peerless novel applications which are far beyond the conventional one. Nanomaterials are synthesized in different shapes like powder particles, rods, wires, tubes, and as thin films which are merely based on the fabrication route one employs. Nanopowders with remarkable properties like high surface to volume ratio, low heat capacity, dispersibility, wettability, adhesive nature, range of size, and usage flexibility have earned a research spotlight. Nanopowders in the form of metals, metal oxides, and ceramics are the most extensively used candidates in powder metallurgy for making nanocomposites. However, the choice of nanopowders for making composites is always confined with a specific objective one deals with; say for example zinc, iron oxide, and titanium oxide are opted to improve corrosion resistance, thermal layer insulation, and self-cleaning ability of a base material, respectively. Mechanical alloying and powder metallurgy are the most preferred techniques employed for processing metal matrix composites at nanoscale. This chapter reviews the fundamentals on nanoparticles, powder processing via mechanical alloying and powder metallurgy, powder characterization techniques, choice of nanopowders in making nanocomposites, and their potential applications toward energy and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dudley B(2019) BP statistical review of world energy. Stat Rev World Energy 68:1–64. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf

  2. Kelsall RW, Hamley IW, Geoghegan M (eds) (2005) Nanoscale science and technology. Wiley, Chichester

    Google Scholar 

  3. Xu C, Wang ZL (2011) Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv Mater 23(7):873–877. https://doi.org/10.1002/adma.201003696

    Article  CAS  Google Scholar 

  4. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):127–3171. https://doi.org/10.1039/C3CS00009E

    Article  CAS  Google Scholar 

  5. Ying L, Fu Z, Wu K, Wu C, Zhu T, Xie Y, Wang G (2019) Effect of TiO2 sol and PTFE emulsion on properties of cu–Sn antiwear and friction reduction coatings. Coatings 9(1):59. https://doi.org/10.3390/coatings9010059

    Article  CAS  Google Scholar 

  6. Zhao W, Chen IW, Huang F (2019) Toward large-scale water treatment using nanomaterials. Nano Today 27:11–27. https://doi.org/10.1016/j.nantod.2019.05.003

    Article  CAS  Google Scholar 

  7. Deepak A, Srinivasan N, Karthik V, Ramya S, Ganesan V, Shankar P (2015) Graphene based polymer strain sensors for non-destructive testing. Adv Mater Res 1101:314–317. https://doi.org/10.4028/www.scientific.net/AMR.1101.314

    Article  Google Scholar 

  8. Akinlabi SA, Ogbonna OS, Mashinini PM, Adeniran AA, Fatoba OS, Akinlabi ET Titanium and epoxy for automobile application: a review. Published In: Proceeding of the Eighth International Conference on Advances in Civil, Structural and Mechanical Engineering – CSM 2019, 23–24 April 2019, Birmingham City. https://doi.org/10.15224/978-1-63248-170-2-09

  9. Zhang Z, Qin J, Zhang W, Pan YT, Wang DY, Yang R (2020) Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem Eng J 381:122777. https://doi.org/10.1016/j.cej.2019.122777

    Article  CAS  Google Scholar 

  10. Tangboriboon N (2019) Carbon and carbon nanotube drug delivery and its characterization, properties, and applications. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Nanocarriers for drug delivery. Elsevier, Amsterdam/Netherlands, pp 451–467. https://doi.org/10.1016/B978-0-12-814033-8.00015-1

    Chapter  Google Scholar 

  11. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 13:3311. https://doi.org/10.2147/IJN.S165125

    Article  CAS  Google Scholar 

  12. European Commission (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J Eur Union 275(2010):38–40. https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm

  13. Büyüktiryaki S, Keçili R (2020) C. M Hussain, modern age of analytical chemistry: nanomaterials. In: Hussain CM (ed) Handbook of nanomaterials in analytical chemistry. Elsevier, London, UK, pp 29–40. https://doi.org/10.1016/B978-0-12-816699-4.00002-5

    Chapter  Google Scholar 

  14. Ventra M, Evoy S, Heflin JR (eds) (2006) Introduction to nanoscale science and technology. Springer Science & Business Media, New York

    Google Scholar 

  15. Roco MC (2004) Nanoscale science and engineering: unifying and transforming tools. AICHE J 50(5):890–897. https://doi.org/10.1002/aic.10087

    Article  CAS  Google Scholar 

  16. Ghosh R, Sahu RP, Ganguly R, Zhitomirsky I, Puri IK (2020) Photocatalytic activity of electrophoretically deposited TiO2 and ZnO nanoparticles on fog harvesting meshes. Ceram Int 46(3):3777–3785. https://doi.org/10.1016/j.ceramint.2019.10.100

    Article  CAS  Google Scholar 

  17. Mazaheri Y, Jalilvand MM, Heidarpour A, Jahani AR (2020) Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing. Tribol Int 143:106062. https://doi.org/10.1016/j.triboint.2019.106062

    Article  CAS  Google Scholar 

  18. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39. https://doi.org/10.1590/S1516-14392009000100002

    Article  CAS  Google Scholar 

  19. Sajid M, PÅ‚otka-Wasylka J (2020) Nanoparticles: synthesis, characteristics, and applications in analytical and other sciences. Microchem J 154:104623. https://doi.org/10.1016/j.microc.2020.104623

    Article  CAS  Google Scholar 

  20. Singh D, Dubey P, Pradhan M, Singh MR (2013) Ceramic nanocarriers: versatile nanosystem for protein and peptide delivery. Expert Opin Drug Deliv 10(2):241–259. https://doi.org/10.1517/17425247.2012.745848

    Article  CAS  Google Scholar 

  21. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106(32):7729–7744. https://doi.org/10.1021/jp0209289

    Article  CAS  Google Scholar 

  22. DeLuca LT, Galfetti L, Maggi F, Colombo G, Paravan C, Reina A, Dossi S, Fassina M, Sossi A (2014) Characterization and combustion of aluminum nanopowders in energetic systems. In: Gromov AA, Teipel U (eds) Metal nanopowders: production, characterization, and energetic applications. Wiley, Weinheim, pp 301–400. https://doi.org/10.1002/9783527680696.ch12

    Chapter  Google Scholar 

  23. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. https://doi.org/10.1021/cr030063a

    Article  CAS  Google Scholar 

  24. Tjong SC, Chen H (2004) Nanocrystalline materials and coatings. Mater Sci Eng R 45(1–2):1–88. https://doi.org/10.1016/j.mser.2004.07.001

    Article  CAS  Google Scholar 

  25. Turker M (2004) Effect of production parameters on the structure and morphology of ag nanopowders produced by inert gas condensation. Mater Sci Eng A 367(1–2):74–81. https://doi.org/10.1016/j.msea.2003.10.290

    Article  CAS  Google Scholar 

  26. Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170. https://doi.org/10.2478/s11696-007-0014-7

    Article  CAS  Google Scholar 

  27. Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents-synthesis, formation, assembly and application. Springer, London, UK

    Book  Google Scholar 

  28. Sruthi S, Ashtami J, Mohanan PV (2018) Biomedical application and hidden toxicity of zinc oxide nanoparticles. Mater Today Chem 10:175–186. (2018. https://doi.org/10.1016/j.mtchem.2018.09.008

    Article  CAS  Google Scholar 

  29. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16(25):R829–R858. https://doi.org/10.1088/0953-8984/16/25/R01

    Article  CAS  Google Scholar 

  30. Hadi FA, Kadhim RG (2019) A study of the effect of Nano zinc oxide on cure characteristics and mechanical properties of rubber composites. J Phys: Conf Ser 1234, Conference (1):012043. https://doi.org/10.1088/1742-6596/1234/1/012043

  31. Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M (2020) Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials 13(2):279. https://doi.org/10.3390/ma13020279

    Article  CAS  Google Scholar 

  32. Jia J, Yamamoto H, Okajima T, Shigesato Y (2016) On the crystal structural control of sputtered TiO2 thin films. Nanoscale Res Lett 11(1):324. https://doi.org/10.1186/s11671-016-1531-5

    Article  CAS  Google Scholar 

  33. U.C (2012) Jindal, Material Science and Metallurgy. Pearson Education, India

    Google Scholar 

  34. Rahimian M, Ehsani N, Parvin N, Baharvandi HR (2009) The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J Mater Proc Technol 209(14):5387–5393. https://doi.org/10.1016/j.jmatprotec.2009.04.007

  35. Sundaram J, Ramajayam M (2019) Microstructure and mechanical properties of alumina and titanium Diboride containing AA2014 hybrid composites. J Inst Eng India Ser D 100(2):255–262. https://doi.org/10.1007/s40033-019-00187-0

    Article  CAS  Google Scholar 

  36. Suresh S, Gowd GH, Kumar MD (2019) Mechanical properties of AA 7075/Al2O3/SiC Nano-metal matrix composites by stir-casting method. J. Inst. Eng. India Ser. D 100(1):43–53. https://doi.org/10.1007/s40033-019-00178-1

    Article  CAS  Google Scholar 

  37. Hannink RH, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

    Article  CAS  Google Scholar 

  38. Yu T, Zhang Z, Liu Q, Kuliiev R, Orlovskaya N, Wu D (2020) Extrusion-based additive manufacturing of yttria-partially-stabilized zirconia ceramics. Ceram Int 46(4):5020–5027. https://doi.org/10.1016/j.ceramint.2019.10.245

    Article  CAS  Google Scholar 

  39. German RM (2005) Powder metallurgy and particulate materials processing: the processes, materials, products, properties, and applications. Metal Powder Industries Federation, Princeton

    Google Scholar 

  40. James WB (2015) Powder metallurgy methods and applications. In: Samal P, Newkirk J (eds) ASM handbook of powder metallurgy, vol 7. ASM International, Novelty, pp 9–19

    Google Scholar 

  41. Thümmler F, Oberacker R (1993) An introduction to powder metallurgy. In: Jenkins IJ, Wood JV (eds) The institute of materials, book 490. Cambridge University Press, Cambridge, UK

    Google Scholar 

  42. Tsutsui T (2012) Recent technology of powder metallurgy and applications. Hitachi Powdered Metals Technical Report 54:12–20

    Google Scholar 

  43. Upadhyaya A, Upadhyaya GS (2011) Powder metallurgy: science, technology and materials. Universities Press, India

    Google Scholar 

  44. Tallmadge JA (1978) Powder production by gas and water atomization of liquid metals. In: Kuhn HA, Lawley A (eds) Powder metallurgy processing. Academic, New York, pp 1–32

    Google Scholar 

  45. Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans 1(10):2943–2951. https://doi.org/10.1007/BF03037835

    Article  CAS  Google Scholar 

  46. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–2), 1-184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  47. Pareek V, Bhargava A, Gupta R, Jain N, Panwar J (2017) Synthesis and applications of noble metal nanoparticles: a review. Adv Sci Eng Med 9(7):527–544. https://doi.org/10.1166/asem.2017.2027

    Article  CAS  Google Scholar 

  48. Kerr I (1993) Laboratory mills for mechanical alloying. Metal Powder Rep 48:36–38

    Google Scholar 

  49. Lynch J, Rowland CA (2005) The history of grinding. Society for Mining, Metallurgy and Exploration, Inc. (SME), Littleton. ISBN 0873352386

    Google Scholar 

  50. Di LM, Bakker H (1991) Phase transformation of the compound V3Ga induced by mechanical grinding. J Phys Condens Matter 3(20):3427. https://doi.org/10.1088/0953-8984/3/20/004

    Article  CAS  Google Scholar 

  51. Harringa JL, Cook BA, Beaudry BJ (1992) Effects of vial shape on the rate of mechanical alloying in Si80Ge20. J Mater Sci 27(3):801–804. https://doi.org/10.1007/BF00554056

    Article  CAS  Google Scholar 

  52. Tsukerman SA (1965) Powder metallurgy. Pergamon Press, London, UK

    Google Scholar 

  53. Kartika S, Utomo ABS, Kamsul A, Evvy K, Evi Y, Edi S (2020) Effect of milling time on the microstructure and dielectric properties of chitosan nanopowder. Int J Nanoelectronics and Mater 13(1):1–8. 2020. http://dspace.unimap.edu.my:80/xmlui/handle/123456789/63961

  54. Paul KT, Satpathy SK, Manna I, Chakraborty KK, Nando GB (2007) Preparation and characterization of nano structured materials from fly ash: a waste from thermal power stations, by high energy ball milling. Nanoscale Res Lett 2(8):397. https://doi.org/10.1007/s11671-007-9074-4

    Article  CAS  Google Scholar 

  55. Varin RA, Czujko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Springer, New York

    Book  Google Scholar 

  56. Xu C, De S, Balu AM, Ojeda M, Luque R (2015) Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem Commun 51(31):6698–6713. https://doi.org/10.1039/C4CC09876E

    Article  CAS  Google Scholar 

  57. Stalin B, Meignanamoorthy M, Ravichandran M (2018) August. Synthesis of metal matrix composites and alloys by mechanical alloying: a review. Mater Sci Eng Confer Ser 402, Conference (2) 012097. https://doi.org/10.1088/1757-899X/402/1/012097

  58. Zhang W, Hu Y, Zhang G, Wang Z (2017) Formation of nanoscale metallic glassy particle reinforced Al-based composite powders by high-energy milling. Metals 7(10):425. https://doi.org/10.3390/met7100425

    Article  CAS  Google Scholar 

  59. Sherif El-Eskandarany M (2015) Mechanical alloying: nanotechnology, materials science and powder metallurgy, 2nd edn. Elsevier Inc, Oxford, UK

    Google Scholar 

  60. Wang J, Wu S, Suo XK, Liao H (2019) The processes for fabricating Nanopowders. In: Yang G-J, Suo X (eds) Advanced nanomaterials and coatings by thermal spray. Elsevier Inc, Oxford, pp 13–25. https://doi.org/10.1016/B978-0-12-813870-0.00002-4

    Chapter  Google Scholar 

  61. Bhuyan RK, Mohapatra RK, Nath G, Das D, Sahoo BK, Pamu D (2020) Influence of high-energy ball milling on structural, microstructural, and optical properties of Mg2TiO4 nanoparticles. J Mater Sci Mater Electron 31:628–636. https://doi.org/10.1007/s10854-019-02568-3

    Article  CAS  Google Scholar 

  62. Titus D, Samuel EJJ, Roopan SM (2019) Nanoparticle characterization techniques. In: Shukla AK, Iravani S (eds) Green synthesis, characterization and applications of nanoparticles. Elsevier, Oxford, pp 303–319. https://doi.org/10.1016/B978-0-08-102579-6.00012-5

    Chapter  Google Scholar 

  63. Bragg WL (1993) The structure of some crystals as indicated by their diffraction of X-rays. Proc R Soc Lond Ser A 89(610):248–277. https://doi.org/10.1098/rspa.1913.0083

    Article  Google Scholar 

  64. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA (2020) Functionalization of MoO3-NiMoO4 nanocomposite using organic template for energy storage application. J Energy Storage 29:101309. https://doi.org/10.1016/j.est.2020.101309

    Article  Google Scholar 

  65. Ambika S, Gopinath S, Saravanan K, Sivakumar K, Ragupathi C, Sukantha TA (2019) Structural, morphological and optical properties and solar cell applications of thioglycolic routed nano cobalt oxide material. Energy Rep 5:305–309. https://doi.org/10.1016/j.egyr.2019.02.005

    Article  Google Scholar 

  66. Arun T, Prabakaran K, Udayabhaskar R, Mangalaraja RV, Akbari-Fakhrabadi A (2019) Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications. Appl Surf Sci 485:147–157. https://doi.org/10.1016/j.apsusc.2019.04.177

    Article  CAS  Google Scholar 

  67. Dammala P, Machado J, Rani B, Murali S, Devi S, Luwang MN, Sahu NK (2019) Synthesis of biphasic nanomaterials based on ZnO and SnO2: application towards photocatalytic degradation of acid red dye. Nano-Struct & Nano-Objects 18:100292. https://doi.org/10.1016/j.nanoso.2019.100292

    Article  CAS  Google Scholar 

  68. Dhivya S, Hussain SI, Sheela SJ, Kalaiselvam S (2019) Experimental study on microcapsules of ag doped ZnO nanomaterials enhanced oleic-Myristic acid eutectic PCM for thermal energy storage. Thermochim Acta 671:70–82. https://doi.org/10.1016/j.tca.2018.11.010

    Article  CAS  Google Scholar 

  69. Eskandari M, García CA, Buceta D, Malekfar R, Taboada P (2019) NiCo2O4/MWCNT/PANI coral-like nanostructured composite for electrochemical energy-storage applications. J Electroanal Chem 851:113481. https://doi.org/10.1016/j.jelechem.2019.113481

    Article  CAS  Google Scholar 

  70. Mahmoud HR, El-Molla SA, Naghmash MA (2019) Novel mesoporous MnO2/SnO2 nanomaterials synthesized by ultrasonic-assisted co-precipitation method and their application in the catalytic decomposition of hydrogen peroxide. Ultrasonics 95:95–103. https://doi.org/10.1016/j.ultras.2019.03.011

    Article  CAS  Google Scholar 

  71. Saravanakumar B, Ramachandran SP, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2019) Transition mixed-metal molybdates (MnMoO4) as an electrode for energy storage applications. Appl Phys A Mater Sci Process 125(1):6. https://doi.org/10.1007/s00339-018-2309-7

    Article  CAS  Google Scholar 

  72. Yesuraj J, Suthanthiraraj SA (2019) Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. J Mol Struct 1181:131–141. https://doi.org/10.1016/j.molstruc.2018.12.087

    Article  CAS  Google Scholar 

  73. Rai SK, Rai R, Bairy R, Murari MS, Jayarama A, Pinto R Role of Zn in tuning the structural, morphological and optical properties of V2O5 nanostructures deposited by spray pyrolysis. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.03.028

  74. Burducea I, Mateescu AO, Mateescu G, Ionescu C, Straticiuc M, Craciun LS, Lungu CP, Pompilian GO, Racolta PM (2019) AFM, RBS and tribological properties of WC/WS2 nanostructures after 1.5 MeV Nb+ implantation. Nucl Instrum Methods Phys Res Sect B 450:357–360. https://doi.org/10.1016/j.nimb.2018.08.002

    Article  CAS  Google Scholar 

  75. Ganesh V, Shkir M, Anis M, AlFaify S (2019) Structural, morphological and opto-nonlinear studies of Cu: NiO: glass thin films facilely designed by spin coater for electro-optics. Mater Res Express 6(8):086439. https://doi.org/10.1088/2053-1591/ab2090

    Article  CAS  Google Scholar 

  76. Bhardwaj N, Satpati B, Mohapatra S (2020) Plasmon-enhanced photoluminescence from SnO2 nanostructures decorated with Au nanoparticles. Appl Surf Sci 504:144381. https://doi.org/10.1016/j.apsusc.2019.144381

    Article  CAS  Google Scholar 

  77. Srinivasan S, Kannan AM, Kothurkar N, Khalil Y, Kuravi S (2015) Nanomaterials for energy and environmental applications. J Nanomater. https://doi.org/10.1155/2015/979026

  78. https://www.azonano.com/news.aspx?newsID=37066

  79. Amiri O, Salavati-Niasari M, Sabet M, Ghanbari D (2014) Sonochemical method for preparation of copper indium sulfide nanoparticles and their application for solar cell. Comb Chem High Throughput Screen 17(2):183–189

    Article  CAS  Google Scholar 

  80. Jung HS, Lee JK, Nastasi M, Lee SW, Kim JY, Park JS, Hong KS, Shin H (2005) Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir 21(23):10332–10335. https://doi.org/10.1021/la051807d

    Article  CAS  Google Scholar 

  81. Suliman AE, Tang Y, Xu L (2007) Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells. Sol Energy Mater Sol Cells 91(18):658–1662. https://doi.org/10.1016/j.solmat.2007.05.014

    Article  CAS  Google Scholar 

  82. Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114(29):12784–12791. https://doi.org/10.1021/jp103300v

    Article  CAS  Google Scholar 

  83. Temple TL, Bagnall DM (2011) Optical properties of gold and aluminum nanoparticles for silicon solar cell applications. J Appl Phys 109(8):084343. https://doi.org/10.1063/1.3574657

    Article  CAS  Google Scholar 

  84. Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G (2015) Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J Alloys Compd 632:321–325. https://doi.org/10.1016/j.jallcom.2015.01.172

    Article  CAS  Google Scholar 

  85. Gao Y, Wu Y, Lu H, Chen C, Liu Y, Bai X, Yang L, William WY, Dai Q, Zhang Y (2019) CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy 59:517–526. https://doi.org/10.1016/j.nanoen.2019.02.070

    Article  CAS  Google Scholar 

  86. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663. https://doi.org/10.1021/cr900356p

    Article  CAS  Google Scholar 

  87. Bagbi Y, Pandey A, Solanki PR (2018) Role of nanostructured materials toward remediation of heavy metals/metalloids. In: Khan Z (ed) Nanomaterials and their applications. Springer, Singapore, pp 73–95. https://doi.org/10.1007/978-981-10-6214-8_3

    Chapter  Google Scholar 

  88. Peng Y, Liu Y, Dai J, Cao L, Liu X (2020) A sustainable strategy for remediation of oily sewage: clean and safe. Separ Purif Technol 240:116592. https://doi.org/10.1016/j.seppur.2020.116592

    Article  CAS  Google Scholar 

  89. Yao L, He J (2014) Recent progress in antireflection and self-cleaning technology–from surface engineering to functional surfaces. Prog Mater Sci 61:94–143. https://doi.org/10.1016/j.pmatsci.2013.12.003

    Article  Google Scholar 

  90. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22. https://doi.org/10.1007/s10311-016-0600-4

    Article  CAS  Google Scholar 

  91. Abdel-Raouf MS, Abdul-Raheim ARM (2017) Removal of heavy metals from industrial waste water by biomass-based materials: a review. J Pollut Eff Control 5:180

    Google Scholar 

  92. WHO, Guidelines for drinking-water quality. World Health Organization, 4th (WHO Press, Geneva 2011). ISBN: 978 92 4 154815 1. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/

  93. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  94. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  Google Scholar 

  95. Kumari V, Bhaumik A (2015) Mesoporous ZnAl2O 4: an efficient adsorbent for the removal of arsenic from contaminated water. Dalton Trans 44(26):11843–11851. https://doi.org/10.1039/C5DT01333J

    Article  CAS  Google Scholar 

  96. Fu Y, Wang J, Liu Q, Zeng H (2014) Water-dispersible magnetic nanoparticle–graphene oxide composites for selenium removal. Carbon 77:710–721. https://doi.org/10.1016/j.carbon.2014.05.076

    Article  CAS  Google Scholar 

  97. Alirezaei S, Monirvaghefi SM, Saatchi A, Ürgen M, Motallebzadeh A (2013) High temperature tribology of nanocrystalline Ni–P–Ag coating. Surf Eng 29(4):306–311. https://doi.org/10.1179/1743294412Y.0000000085

    Article  CAS  Google Scholar 

  98. Kalali EN, Wang X, Wang DY (2016) Synthesis of a Fe3O4 nanosphere@ Mg–Al layered-double-hydroxide hybrid and application in the fabrication of multifunctional epoxy nanocomposites. Ind Eng Chem Res 55(23):6634–6642. https://doi.org/10.1021/acs.iecr.5b04873

    Article  CAS  Google Scholar 

  99. Yuan Z, Zhou W, Hu T, Chen Y, Li FAN, Xu Z, Wang X (2011) Fabrication and properties of silicone rubber/ZnO nanocomposites via in situ surface hydrosilylation. Surf Rev Lett 18(1–2):33–38. https://doi.org/10.1142/S0218625X11014448

    Article  CAS  Google Scholar 

  100. Chen W, Gao W (2011) Thermal stability and tensile properties of sol-enhanced nanostructured Ni–TiO2 composites. Compos Part A Appl Sci Manuf 42(11):1627–1634. https://doi.org/10.1016/j.compositesa.2011.07.011

    Article  CAS  Google Scholar 

  101. Wang Y, Wang SJ, Shu X, Gao W, Lu W, Yan B (2014) Preparation and property of sol-enhanced Ni–B–TiO2 nano-composite coatings. J Alloys Compd 617:472–478. https://doi.org/10.1016/j.jallcom.2014.08.060

    Article  CAS  Google Scholar 

  102. Zhu Q, Pan Q (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil–water separation. ACS Nano 8(2):1402–1409. https://doi.org/10.1021/nn4052277

    Article  CAS  Google Scholar 

  103. Suresh S, Sudhakara D (2019) Investigations on wire electric discharge machining and mechanical behavior of Al 7075/Nano-SiC composites. J. Inst. Eng. India Ser. D 100(2):217–227. https://doi.org/10.1007/s40033-019-00198-x

    Article  CAS  Google Scholar 

  104. Saha M, Mukherjee S, Gayen A, Mukherjee S (2015) Structural, optical and magnetic properties of nickel–silica nanocomposite prepared by a sol–gel route. J. Inst. Eng. India Ser. D 96(2):169–177. https://doi.org/10.1007/s40033-014-0062-4

    Article  CAS  Google Scholar 

  105. Sekman Y, Felde N, Ghazaryan L, Szeghalmi A, Schröder S (2020) Light scattering characterization of single-layer nanoporous SiO2 antireflection coating in visible light. Appl Opt 59(5):A143–A149. https://doi.org/10.1364/AO.59.00A143

    Article  CAS  Google Scholar 

  106. Nazari A, Riahi S (2011) Effects of CuO nanoparticles on compressive strength of self-compacting concrete. Sadhana 36(3):371. https://doi.org/10.1007/s12046-011-0023-7

    Article  CAS  Google Scholar 

  107. Sultan M, Khan SU, Kanwal F, Islam A, Rafiq K, Hafeez S, Gull N, Shafiq M, Khan RU (2020) Silica nanoparticle-doped polyurethane membranes for reverse osmosis applications. Chem Pap. https://doi.org/10.1007/s11696-020-01124-2

  108. Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331(1–2):50–56. https://doi.org/10.1016/j.memsci.2009.01.007

    Article  CAS  Google Scholar 

  109. Asadi A, Pourfattah F (2019) Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol 343:296–308. https://doi.org/10.1016/j.powtec.2018.11.023

    Article  CAS  Google Scholar 

  110. Singh G, Singh RP, Jolly SS (2020) Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: a review. J Sol-Gel Sci Technol 94:505–530. https://doi.org/10.1007/s10971-020-05222-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kaviarasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaviarasu, C., Ravichandran, M. (2020). Nanomaterials through Powder Metallurgy: Production, Processing, and Potential Applications toward Energy and Environment. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_127-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_127-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics