Skip to main content
Log in

Hydrophobicity-induced drying transition in alkanethiol self-assembled monolayer—water interface

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

During the course of our investigation of the electron transfer properties of some redox species through highly hydrophobic long chain alkanethiol molecules on gold in aqueous and non-aqueous solvents, we obtained some intriguing results such as unusually low interfacial capacitance, very high values of impedance and film resistance, all of which pointed to the possible existence of a nanometer size interfacial gap between the hydrophobic monolayer and aqueous electrolyte. We explain this phenomenon by a model for the alkanethiol monolayer—aqueous electrolyte interface, in which the extremely hydrophobic alkanethiol film repels water molecules adjacent to it and in the process creates a shield between the monolayer film and water. This effectively increases the overall thickness of the dielectric layer that is manifested as an abnormally low value of interfacial capacitance. This behaviour is very much akin to the ‘drying transition’ proposed by Lum, Chandler and Weeks in their theory of length scale dependent hydrophobicity. For small hydrophobic units consisting of apolar solutes, the water molecules can reorganize around them without sacrificing their hydrogen bonds. Since for an extended hydrophobic unit, the existence of hydrogen bonded water structure close to it is geometrically unfavourable, there is a net depletion of water molecules in the vicinity leading to the possible creation of a hydrophobic interfacial gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W Kauzmann,Adv. Prot. Chem. 14, 1 (1959)

    Article  Google Scholar 

  2. G Hummer, J C Rasaiah and J P Noworyta,Nature 414, 188 (2001)

    Article  ADS  Google Scholar 

  3. O Beckstein, P C Biggin and M S P Sansom,J. Phys. Chem. B105, 12902 (2001)

    Google Scholar 

  4. H O Finklea,Electrochemistry of organized monolayers of thiols and related molecules on electrodes edited by A J Bard and I Rubinstein (Marcel Dekker, New York, 1996)

    Google Scholar 

  5. A Ulman,An introduction to ultrathin organic films (Academic Press, San Diego, 1991) p. 286

    Google Scholar 

  6. R G Nuzzo and D L Allara,J. Am. Chem. Soc. 105, 4481 (1983)

    Article  Google Scholar 

  7. C E D Chidsey and D N Loiacono,Langmuir 6, 682 (1990)

    Article  Google Scholar 

  8. C A Widrig, C A Alves and M D Porter,J. Am. Chem. Soc. 113, 2 (1991)

    Article  Google Scholar 

  9. A Ulman, J E Eilers and N Tillman,Langmuir 5, 1147 (1989)

    Article  Google Scholar 

  10. H O Finklea, S Avery, M Lynch and R Furtsch,Langmuir 3, 409 (1987)

    Article  Google Scholar 

  11. A M Becka and C J Miller,J. Phys. Chem. 96, 2657 (1992)

    Article  Google Scholar 

  12. K L Prime and G M Whitesides,Science 252, 1164 (1991)

    Article  ADS  Google Scholar 

  13. U K Sur and V Lakshminarayanan,J. Colloid Interface Sci. 254, 410 (2002)

    Article  Google Scholar 

  14. J Diebel, H Lowe, P Samori and J P Rabe,Appl. Phys. A73, 273 (2001)

    ADS  Google Scholar 

  15. R Subramanian and V Lakshminarayanan,Electrochim. Acta 45, 501 (2000)

    Article  Google Scholar 

  16. T M Nahir and E F Bowden,Electrochim. Acta 39, 2347 (1994)

    Article  Google Scholar 

  17. C Frubose and K Doblhofer,J. Chem. Soc. Faraday Trans. 91, 1949 (1995)

    Article  Google Scholar 

  18. D Yan, J A Saunders and G K Jennings,Langmuir 18, 10202 (2002)

    Article  Google Scholar 

  19. V Lakshminarayanan,Curr. Sci. 74, 413 (1998)

    Google Scholar 

  20. L R Pratt and D Chandler,J. Chem. Phys. 67, 3683 (1977)

    Article  ADS  Google Scholar 

  21. F H Stillinger,J. Solution Chem. 2, 141 (1973)

    Article  Google Scholar 

  22. H K Christenson and P M Claesson,Science 239, 390 (1988)

    Article  ADS  Google Scholar 

  23. W A Ducker, Z Xu and J N Israelachvili,Langmuir 10, 3279 (1994)

    Article  Google Scholar 

  24. J L Parker, P M Claesson and P J Attard,J. Phys. Chem. 98, 8468 (1994)

    Article  Google Scholar 

  25. R M Pashley, P M McGuiggan, B W Ninham and D F Evans,Science 229, 1088 (1985)

    Article  ADS  Google Scholar 

  26. H K Christenson and P M Claesson,Adv. Colloid Interface Sci. 91, 391 (2001)

    Article  Google Scholar 

  27. L F Scatena, M G Brown and G L Richmond,Science 292, 908 (2001)

    Article  ADS  Google Scholar 

  28. X Zhang, Y Zhu and S Granick,Science 295, 663 (2002)

    Article  ADS  Google Scholar 

  29. K Lum, D Chandler and J D Weeks,J. Phys. Chem. B103, 4570 (1999)

    Google Scholar 

  30. D Chandler,Nature 417, 491 (2002)

    Article  ADS  Google Scholar 

  31. L Sun and R M Crooks,J. Electrochem. Soc. 138, L23 (1991)

    Article  Google Scholar 

  32. W Plieth, W Kozlowski and T Twomey,Adsorption of molecules at metal electrodes edited by J Lipkowski and P N Ross (VCH, New York, 1992) ch. 5, p. 269

    Google Scholar 

  33. J Lipkowski and P N Ross (eds),Adsorption of molecules at metal electrodes (VCH, New York, 1992) pp. 91, 186

    Google Scholar 

  34. B B Damaskin, O A Petrii and V V Batrakov,Adsorption of organic compounds on electrodes (Plenum Press, New York, 1971)

    Google Scholar 

  35. B Kronberg,J. Colloid Interface Sci. 96, 55 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshminarayanan, V., Sur, U.K. Hydrophobicity-induced drying transition in alkanethiol self-assembled monolayer—water interface. Pramana - J Phys 61, 361–371 (2003). https://doi.org/10.1007/BF02708316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708316

Keywords

PACS Nos

Navigation