Skip to main content
Log in

A molecular dynamics study of the ionic and molecular permeability of alkanethiol monolayers on the gold electrode surface

  • Nanostructured Systems and Materials
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Ionic and molecular permeability of monolayers of alkanethiols on the Au(111) surface in an aqueous NaF solution is investigated using the molecular dynamics (MD) method. The surface charge-driven penetration of the electrolyte components into the monolayer was found to have a threshold. The mechanism of ion permeation comprises two steps, (1) the formation of a polar channel of water molecules which are drawn into the nonpolar monolayer due to local electric field fluctuations (2) transport of ions through the polar channel to the Au(111) surface. It is concluded that the defect-free monolayers are impermeable for the electrolyte components at electrode potentials related to the stability region of the monolayer. The monolayer of hexadecanethiols (—SC16H33) is less permeable with that of hexanethiols (—SC6H13), this is explained in terms of a closer packing structure for longer hydrocarbon tails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Protsailo, L.V. and Fawcett, W.R., Electrochim. Acta, 2000, vol. 45, no. 21, p. 3497.

    Article  CAS  Google Scholar 

  2. Becka, A.M. and Miller, C.J., J. Phys. Chem., 1993, vol. 97, no. 23, p. 6233.

    Article  CAS  Google Scholar 

  3. Becka, A.M. and Miller, C.J., J. Phys. Chem., 1992, vol. 96, no. 6, p. 2657.

    Article  CAS  Google Scholar 

  4. Miller, C., Cuendet, P., and Graetzel, M., J. Phys. Chem., 1991, vol. 95, no. 2, p. 877.

    Article  CAS  Google Scholar 

  5. Newton, L., Slater, T., Clark, N., and Vijayaraghavan, A., J. Mater. Chem. C, 2013, vol. 1, no. 3, p. 376.

    Article  CAS  Google Scholar 

  6. Gooding, J.J., Mearns, F., Yang, W., and Liu, J., Electroanalysis, 2003, vol. 15, no. 2, p. 81.

    Article  CAS  Google Scholar 

  7. Nikitina, V.A., Rudnev, A.V., Tsirlina, G.A., and Wandlowski, T., J. Phys. Chem. C, 2014, vol. 118, no. 29, p. 15970.

    Article  CAS  Google Scholar 

  8. Porter, M.D., Bright, T.B., Allara, D.L., and Chidsey, C.E.D., J. Am. Chem. Soc., 1987, vol. 109, no. 12, p. 3559.

    Article  CAS  Google Scholar 

  9. Nikitina, V.A., Kislenko, S.A., Nazmutdinov, R.R., Bronshtein, M.D., and Tsirlina, G.A., J. Phys. Chem. C, 2014, vol. 118, no. 12, p. 6151.

    Article  CAS  Google Scholar 

  10. Boubour, E. and Lennox, R.B., J. Phys. Chem. B, 2000, vol. 104, no. 38, p. 9004.

    Article  CAS  Google Scholar 

  11. Darwish, N., Eggers, P.K., Ciampi, S., Zhang, Y., Tong, Y., Ye, S., Paddon-Row, M.N., and Gooding, J.J., Electrochem. Commun., 2011, vol. 13, no. 5, p. 387.

    Article  CAS  Google Scholar 

  12. O’Brien, B., Sahalov, H., and Searson, P.C., Appl. Phys. Lett., 2010, vol. 97, no. 4, p. 043110.

    Article  Google Scholar 

  13. Boubour, E. and Lennox, R.B., Langmuir, 2000, vol. 16, no. 19, p. 7464.

    Article  CAS  Google Scholar 

  14. Dai, J., Li, Z., Jin, J., Shi, Y., Cheng, J., Kong, J., and Bi, S., Biosensors Bioelectronics, 2009, vol. 24, no. 5, p. 1074.

    Article  CAS  Google Scholar 

  15. Sahalov, H., O’Brien, B., Stebe, K.J., Hristova, K., and Searson, P.C., Langmuir, 2007, vol. 23, no. 19, p. 9681.

    Article  CAS  Google Scholar 

  16. Vericat, C., Vela, M.E., and Salvarezza, R.C., Phys. Chem. Chem. Phys., 2005, vol. 7, no. 18, p. 3258.

    Article  CAS  Google Scholar 

  17. Wang, B., Luo, J., Wang, X., Wang, H., and Hou, J.G., Langmuir, 2004, vol. 20, no. 12, p. 5007.

    Article  CAS  Google Scholar 

  18. Slowinski, K. and Majda, M., J. Electroanal. Chem., 2000, vol. 491, no. 1/2, p. 139.

    Article  CAS  Google Scholar 

  19. Yeh, I.-C. and Berkowitz, M.L., J. Phys. Chem., 1999, vol. 111, no. 7, p. 3155.

    Article  CAS  Google Scholar 

  20. Joung, I.S. and Cheatham, T.E., J. Phys. Chem. B, 2008, vol. 112, no. 30, p. 9020.

    Article  CAS  Google Scholar 

  21. Jang, S.S., Jang, Y.H., Kim, Y.-H., Goddard, W.A., Flood, A.H., Laursen, B.W., Tseng, H.-R., Stoddart, J.F., Jeppesen, J.O., Choi, J.W., Steuerman, D.W., DeIonno, E., and Heath, J.R., J. Am. Chem. Soc., 2005, vol. 127, no. 5, p. 1563.

    Article  CAS  Google Scholar 

  22. Kislenko, S.A., Amirov, R.H., and Samoylov, I.S., J. Phys. Chem. C, 2013, vol. 117, no. 20, p. 10589.

    Article  CAS  Google Scholar 

  23. Kislenko, S., Amirov, R., and Samoylov, I., J. Phys.: Conf. Ser., 2013, vol. 418, no. 1, p. 012021.

    Google Scholar 

  24. Kislenko, S.A., Amirov, R.H., and Samoylov, I.S., Phys. Chem. Chem. Phys., 2010, vol. 12, no. 37, p. 11245.

    Article  CAS  Google Scholar 

  25. Kislenko, S.A., Samoylov, I.S., and Amirov, R.H., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 27, p. 5584.

    Article  CAS  Google Scholar 

  26. Troiano, G.C., Tung, L., Sharma, V., and Stebe, K.J., Biophys. J., 1998, vol. 75, no. 2, p. 880.

    Article  CAS  Google Scholar 

  27. Kinosita, K., Jr. and Tsong, T.Y., Biochim. Biophys. Acta—Biomembr., 1979, vol. 554, no. 2, p. 479.

    Article  CAS  Google Scholar 

  28. Bockmann, R.A., de Groot, B.L., Kakorin, S., Neumann, E., and Grubmuller, H., Biophys. J., 2008, vol. 95, no. 4, p. 1837.

    Article  Google Scholar 

  29. Voevodin, Vl.V., Zhumatii, S.A., Sobolev, S.I., Antonov, A.S., Bryzgalov, P.A., Nikitenko, D.A., Stefanov, K.S., and Voevodin, V.V., Otkrytye Sistemy, 2012, no. 7, p. 36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kislenko.

Additional information

Original Russian Text © S.A. Kislenko, V.A. Nikitina, R.R. Nazmutdinov, 2015, published in Khimiya Vysokikh Energii, 2015, Vol. 49, No. 5, pp. 382–388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislenko, S.A., Nikitina, V.A. & Nazmutdinov, R.R. A molecular dynamics study of the ionic and molecular permeability of alkanethiol monolayers on the gold electrode surface. High Energy Chem 49, 341–346 (2015). https://doi.org/10.1134/S0018143915050069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143915050069

Keywords

Navigation