Skip to main content
Log in

Modeling for industrial heat exchanger type steam reformer

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In a heat exchanger type steam methane reformer, the temperature profiles and mole fractions along the axial distance from the top of the reformer can be predicted by using the channel model, considering radiation heat transfer. The cross-section of the reformer tube was divided into several channels as concentric circles and then heat transfer and mass transfer at the interfaces between adjacent channels were considered. Because the steam reformer is operated at high temperature, the radiation and convection were combined into one heat transfer coefficient to simplify the transfer analysis. This model predicts the industrial plant data very well; therefore, it may be used with confidence to design the industrial heat exchanger type reformer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, D. W., Gerhard, E. R. and Likins Jr., M. R., “Kinetics of the Methane-Steam Reaction”,Ind. Eng. Chem. Process Des. Dev.,14, 256 (1975).

    Article  CAS  Google Scholar 

  • Bloch, A. G., “Thermal Radiation-Heat Transfer”, Energy, Leningrad (1967).

    Google Scholar 

  • Elnashaie, S. S. E. H., Adris, A. M., Soliman, M. A. and Al-Ubaid, A. S., “Digital Simulation of Industrial Steam Reformers for Natural Gas using Heterogeneous Models”,Can. J. Chem. Eng.,70, 786 (1992).

    Article  CAS  Google Scholar 

  • Froment, G. F. and Bischoff, K. B., “Chemical Reactor Analysis and Design,” John Wiley, New York (1979).

    Google Scholar 

  • Khomenko, A. A., Apelbaum, L. O., Shub, F. S., Snagovskii, S. and Temkin, M. I., “Kinetics of the Reaction of Methane with Water Vapor and the Reverse Reaction of Hydrogenation of Carbon Monoxide on the Surface of Nickel”,Kinet. Katal.,12, 423 (1971).

    CAS  Google Scholar 

  • Kim, D. H. and Lee, T. J., “Kinetics of Methane Steam Reforming”,HWAHAK KONGHAK,29, 396 (1991).

    CAS  Google Scholar 

  • Kim, J. H., Choi, B. S. and Yi, J. H., “Simulation on the Methane Steam Reforming in Pd-Membrane Reactor”,HWAHAK KONGHAK,37, 210 (1999).

    CAS  Google Scholar 

  • Ko, K. D., Lee, J. K., Park, D. and Shin, S. H., “Kinetics of Steam Reforming over A Ni/Alumina Catalyst”,Korean J. Chem. Eng.,12, 478 (1995).

    Article  CAS  Google Scholar 

  • Kulkarni, B. D. and Doriswamy, L. K., “Estimation of Effective Transport Properties in Packed Bed Reactors”Catal. Rev.: Sci. Eng.,22, 431 (1980).

    Article  CAS  Google Scholar 

  • Nam, S. W., Yoon, S. P., Ha, H. Y., Hong, S. A. and Maganyuk, A. P., “Methane Steam Reforming in a Pd-Ru Membrane Reacto”,Korean J. Chem. Eng.,17, 288 (2000).

    Article  CAS  Google Scholar 

  • Namaguchi, T. and Kikuchi, K., “Intrinsic Kinetics and Design Simulation in a Complex Reaction Network: Steam-Methane Reforming”,Chem. Eng. Sci.,43, 2295 (1988).

    Article  Google Scholar 

  • Nirula, S. C., “Ammonia from Natural Gas by ICI “LCA” Process” PEP review No.89-1-3, SRI International, California (1990).

    Google Scholar 

  • Park, J. H., Lee, J. S., Chung, H. C., Kim, Y. S., Wee, J. H., Lim, J. H. and Chun, H. S., “Simulation on the Performance and Reaction of Direct Internal Reforming Molten Carbonate Fuel Cell (DIRMCFC)”,HWAHAK KONGHAK,36, 877 (1998).

    CAS  Google Scholar 

  • Sherwood, T. K., Pigford, R. L. and Wilke, C. R., “Mass Transfer”, McGraw-Hill (1975).

  • Schneider III, R. V. and LeBlanc, J. R. Jr., “Choose Optimal Syngas Route”,Hydrocarbon Processing,Mar., 51 (1992).

  • Sosna, M. H., Yanatinskii, B. V., Sokolinskii, Yu. A., Evenchik, N. S. and Nikitina, L. N., “Channel Model”,Theoretical Found. Chem. Eng. (in Russian),23, 785 (1989).

    CAS  Google Scholar 

  • Twigg, M. V., “Catalyst Handbook”, Wolfe Publishing (1989).

  • Westerterp, K. R., “Catalytic Cooled Tubular Reactors: State of the Art and Problem Areas”,Proceedings Int. Conf. Heat & Mass Transfer,20, 617 (1986).

    Google Scholar 

  • Xu, J. and Froment, G. F., “Steam Reforming, Methanation and Water-Gas Shift Reaction. I-Intrinsic Kinetics”,AIChE J.,35, 88 (1989a).

    Article  CAS  Google Scholar 

  • Xu, J. and Froment, G. F., “Steam Reforming, Methanation and Water-Gas Shift Reaction, II-Diffusional Limitations and Reactor Simulation”,AIChE J.,35, 97 (1989b).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ho Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y.H., Sosna, M.H. Modeling for industrial heat exchanger type steam reformer. Korean J. Chem. Eng. 18, 127–132 (2001). https://doi.org/10.1007/BF02707209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02707209

Key words

Navigation