Skip to main content
Log in

Formation of fine particles from residual oil combustion: Reducing nuclei through the addition of inorganic sorbent

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The potential use of sorbents to manage emissions of ultrafine metal nuclei from residual oil combustion was investigated by using an 82-kW-rated laboratory-scale refractory-lined combustor. Without sorbent addition, baseline measurements of the fly ash particle size distribution (PSD) and chemical composition indicate that most of the metals contained in the residual oil form ultrafine particles (∼0.1 μm diameter). These results are consistent with particle formation via mechanisms of ash vaporization and subsequent particle nucleation and growth. Equilibrium calculations predict metal vaporization at flame temperatures and were used to define regions above the dew point for the major metal constituents (iron [Fe], nickel [Ni], vanadium [V], and zinc [Zn]) where vapor-phase metal and solidphase sorbents could interact. The addition of dispersed kaolinite powder resulted in an approximate 35% reduction in the ultrafine nuclei as determined by changes to the PSDs as well as the size-dependent chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann, J. D., Damberg, R. J., Caldwell, J. C., Edwards, C. and Koman, P. D., “Review of the National Ambient Air Quality Standards for Particulate Matter: Policy Assessment of Scientific and Technical Information”, EPA-452/R-96-013 (NTIS PB97-115406), Office of Air Quality Planning and Standards, Research Triangle Park, NC (1996).

  • Barin, I., Knacke, O. and Kubaschewski, O., “Thermochemical Properties of Inorganic Substances” Springer-Verlag, New York, NY (1973).

    Google Scholar 

  • Barin, I., Knacke, O. and Kubaschewski, O., “Thermochemical Properties of Inorganic Substances” supplement, Springer-Verlag, New York, NY (1977).

    Google Scholar 

  • Barin, I., “Thermochemical Data of Pure Substances” VCH Verlagsgesellschaft, New York, NY (1989).

    Google Scholar 

  • Barin, I., “Thermochemical Data of Pure Substances”, VCH Verlagsgesellschaft, New York, NY (1993).

    Google Scholar 

  • Chase, M. W. Jr., “JANAF Thermochemical Tables”, 3rd ed., parts 1 & 2, American Institute of Physics, New York, NY (1986).

    Google Scholar 

  • Davis, S. B., Gale, T K., Wendt, J. O. L. and Linak, W. P., “Multicomponent Coagulation and Condensation of Toxic Metals in Combustion”, Proceedings of the Combustion Institute, Pittsburgh, PA,27, 1785 (1998).

  • Davis, S. B. and Wendt, J. O. L., “Quantitative Analysis of High Temperature Toxic Metal Sorption Rates Using Aerosol Fractionation”Aerosol Sci. & Technol.,33, 536 (2000).

    Article  CAS  Google Scholar 

  • Dreher, K., Jaskot, R., Lehmann, J. R., Richards, J. H., McGee, J. K., Ghio, A. J. and Costa, D. L., “Soluble Transition Metals Mediate Residual Oil Fly Ash induced Acute Lung Injury”,J. Toxicol. Environ. Health, 50, 285 (1997).

    Article  CAS  Google Scholar 

  • Ebbinghaus, B. B., “Thermodynamics of Gas Phase Chromium Species: the Chromium Oxides, the Chromium Oxyhydroxides, and Volatility Calculations in Waste Incineration Processes”,Combust. & Flame, 93, 119 (1993).

    Article  CAS  Google Scholar 

  • Ebbinghaus, B. B., “Thermodynamics of Gas Phase Chromium Species: The Chromium chlorides, Oxychlorides, Fluorides, Oxyfluorides, Hydroxides, Oxyhydroxides, Mixed Oxyfluorochlorohydroxides, and Volatility Calculation in Waste Incineration Processes”Combust. & Flame,93, 311 (1995).

    Article  Google Scholar 

  • Federal Register, 62 FR 38652, July 18 (1997).

  • Gelbard, F. and Seinfeld, J. H., “Simulation of Multicomponent Aerosol Dynamics”,J. Colloid Interface Sci., 78, 485 (1980).

    Article  CAS  Google Scholar 

  • Linak, W. P., “Metal Partitioning in Combustion Processes”,Environ. Comb. Technol.,1, 95 (2000).

    Google Scholar 

  • Linak, W. P., Srivastava, R. K. and Wendt, J. O. L., “Sorbent Capture of Nickel, Lead, and Cadmium in a Laboratory Swirl Flame Incineratof”,Combust. & Flame,100, 214 (1995).

    Google Scholar 

  • Linak, W P., Miller, C. W. and Wendt, J. O. L., “Fine Particle Emissions from Residual Fuel Oil Combustion — Characterization and Mechanisms of Formation”, 5th International Congress on Combustion Technologies for a Clean Environment, Lisbon, Portugal, July 12-15 (1999).

  • Linak, W. P., Miller, C. W. and Wendt, J. O. L., “Fine Particle Emissions from Residual Fuel Oil Combustion: Characterization and Mechanisms of Formation”, Proceedings of the Combustion Institute, Pittsburgh, PA,28, 2651 (2000).

    Article  CAS  Google Scholar 

  • Linak, W. P., Srivastava, R. K. and Wendt, J. O. L., “Metal Aerosol Formation in a Laboratory Swirl Flame Incinerator”,Combust. Sci. & Technol.,101, 7 (1994).

    Article  CAS  Google Scholar 

  • Linak, W. P. and Wendt, J. O. L., “Toxic Metal Emissions from Incineration: Mechanisms and Control”,Prog. Energy Combust. Sci.,19, 185 (1993).

    Article  Google Scholar 

  • Miller, C. A., Linak, W. P., King, C. and Wendt, J. O. L., “Fine Particle Emissions from Heavy Fuel Oil Combustion in a Firetube Package Boilef”,Combust. Sci. & Technol., 134, 477 (1998).

    Article  CAS  Google Scholar 

  • Scotto, M. V., Peterson, T. W. and Wendt, J. O. L., “Hazardous Waste Incineration: The In-Situ Capture of Lead by Sorbents in a Laboratory Down-Flow Combustof”, Proceedings of the Combustion Institute, Pittsburgh, PA, 24, 1109 (1992).

    Google Scholar 

  • Shin, B. S., Lee, S. O. and Kook, N. P., “Preparation of Zeolitic Adsorbents from Waste Coal Fly Ash”,Korean J. Chem. Eng.,12, 352 (1995).

    Article  CAS  Google Scholar 

  • TAPP — Thermodynamic Properties Software, V2.2, ES Microware Inc., Hamilton, OH (1995).

  • U.S. EPA, National Ambient Air Quality Standards for Particulate Matter: proposed decision, 40 CFR, Part 50 (1996).

  • US EPA, Test Method 5 — Determination of Particulate Emissions from Stationary Sources, in 40 CFR, Part 60, Appendix A, Government Institutes, Inc., Rockville, MD (1994).

  • Wilson, R. and Spengler, J.D., eds., “Particles in Our Air: Concentrations and Health Effects” Harvard Univ. Press, Cambridge, MA (1996).

    Google Scholar 

  • Wolff, G. T., “Closure by the Clean Air Scientific Advisory Committee (CAS AC) on the Staff Paper for Particulate Mattef”, EPA-S ABCASAC-LTR-96-008, U.S. EPA, Science Advisory Board, Washington, DC, June 13 (1996).

  • Yang, H., Yun, J. S., Kang, M. J., Kim, J. H. and Kang Y., “Capture of Volatile Hazardous Metals Using a Bed of Kaolinite”,Korean J. Chem. Eng.,16, 646 (1999).

    Article  CAS  Google Scholar 

  • Yang, H., Yun, J. S., Kang, M. J., Kim, J. H. and Kang Y., “Mechanisms and Kinetics of Cd and Pb Capture by Calcined Kaolinite at High Temperatures”,Korean J. Chem. Eng., 18, 499 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Chil Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linak, W.P., Miller, C.A., Santoianni, D.A. et al. Formation of fine particles from residual oil combustion: Reducing nuclei through the addition of inorganic sorbent. Korean J. Chem. Eng. 20, 664–669 (2003). https://doi.org/10.1007/BF02706905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706905

Key words

Navigation