Skip to main content
Log in

Analysis of moving boundary problem of growth of Bismuth germanate crystal by heat exchanger method

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Transient two-dimensional model of the growth of BGO crystal by heat exchanger method has been developed. A finite element method with nonorthogonal mapping technique for the solution of the moving boundary problem is developed where the melt/solid interface shape changes from hemispherical to planar. The moving boundary problems for the melt/solid interface location and the temperature field were solved by two mapping rule method which enables the computation of interface shape changing from hemispherical to planar. The maximum deflection of interface is shown when the melt/solid interface meets the corner of crucible. As the excess heating temperature and the heat exchanger temperature were increased, more growth time for whole process is required but the quality of BGO crystal may be improved. The ratio of the height to the radius of crucible hardly affects the deflection of BGO melt/solid interface when it is greater than 1.5. As the cooling zone radius is decreased, maximum deflection is decreased. The heat transfer between the crucible and the heating element should be suppressed to maximize planarity of the interface shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aris, R.,“Vectors, Tensors and the Basic Equations of Fluid Mechanics”, Prentice-Hall, Englewood Cliffs, 1962.

    Google Scholar 

  • Berkowski, M., Iliev, K., Nikolov, V., Peshev, P. and Piekarczyk, W., Conditions of Maintenance of a Flat Crystal/Melt Interface during Czochralski Growth of Bismuth Germanium Oxide Single Crystals”,J. Crystal Growth,108, 225 (1991).

    Article  CAS  Google Scholar 

  • Bird, R. B., Stewart, W. E. and Lightfoot, E. N.,“Transport Phenomena”, John Wiley & Sons, New York, 1960.

    Google Scholar 

  • Ettouney, H. M. and Brown, R. A.,“Finite-Element Methods for Steady Solidification Problems”,Comput. Phys.,49, 118 (1983).

    Article  CAS  Google Scholar 

  • Fan, S., Shan, G., Li, J. and Wang, W.,“Industrial Bridgman Growth of Large Size BGO Crystal with Special Shapes”,Crystal Properties and Preparation,36–38, 42 (1991).

    Google Scholar 

  • Finlayson, B. A., Nonlinear Analysis in Chemical Engineering”, McGraw-Hill, New York, 1980.

    Google Scholar 

  • Gallagher, R. H., Oden, J. T., Zienkiewicz, O. C., Kawai, T. and Kawahara, M., Finite Elements in Fluids, John Wiley & Sons, New York, 5, 1984.

    Google Scholar 

  • Gelinas, R. J., Doss, S. K. and Miller, K.,“The Moving Finite Element Method: Applications to General Partial Differential Equations with Multiple Large Gradients”,J. Comput. Phys.,40, 202 (1981).

    Article  Google Scholar 

  • Hood, P.,“Frontal Solution Program for Unsymmetric Matrices”,Int. J. Num. Meth. Eng.,10, 379 (1976).

    Article  Google Scholar 

  • Kaldis, E., Crystal Growth of Electronic Materials, Elsevier Science Publishers B. V., 1985.

  • Kawano, K., Yoshida, T., Nakata, R., Yamada, N. and Sumita, M., Crystal Growth of Bi4Ge3O12 and Heat Transfer Analyses of Horizontal Bridgman Techniques”,Jpn. J. Appl. Phys.,32, 1736 (1993).

    Article  CAS  Google Scholar 

  • Lynch, D. R. and Gray, W. G.,“Finite Element Simulation of Flow in Deforming Regions”,J. Comput Phys.,36, 135 (1980).

    Article  CAS  Google Scholar 

  • Quon, D. H. H., Chehab, S., Aota, J., Kuriakose, A. K., Wang, S. S. B., Saghir, M. Z. and Chen, H. L.,“Float-Zone Crystal Growth of Bismuth Germanate and Numerical Simulation,J. Crystal Growth,134, 266 (1993).

    Article  CAS  Google Scholar 

  • Saito, H. and Scriven, L. E.,“Study of Coaling Flow by the Finite Element Method”,J. Comput. Phys.,42, 53 (1981).

    Article  Google Scholar 

  • Schmid, F., Khattak, C. P. and Felt, D. M.,“Producing Large Sapphire for Optical Applications”,Am. Ceram. Soc. Bull.,73, 39 (1994).

    CAS  Google Scholar 

  • Shigematsu, K., Anzai, Y., Omote, K. and Kimura, S.,“Thermal Properties of Molten Bismuth Germanates”,J. Crystal Growth,137, 509 (1994).

    Article  CAS  Google Scholar 

  • Takagi, K. and Fukazawa, T.,“Effect of Growth Conditions on the Shape of Bi4Ge3O12 Single Crystals and on Melt Flow Patterns”,J. Crystal Growth,76, 328 (1986).

    Article  CAS  Google Scholar 

  • Ungar, L. H., Ramprasad, N. and Brown, R. A., Finite Element Methods for Unsteady Solidification Problems Arising in Prediction of Morphological Structure”,J. Sci. Comput.,3, 77 (1988).

    Article  Google Scholar 

  • Weber, M. J. and Monchamp, R. R., “Luminescence of Bi4Ge3O12: Spectral and Decay Properties”,J. Appl. Phys.,44, 5495 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.H., Kim, D.H. & Chung, DS. Analysis of moving boundary problem of growth of Bismuth germanate crystal by heat exchanger method. Korean J. Chem. Eng. 13, 503–509 (1996). https://doi.org/10.1007/BF02706001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706001

Key words

Navigation