Skip to main content
Log in

Predictive model for design of a packed column: Parameter analysis

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of convective velocity in the packed column is presented. When an electric field is applied, the conformation of polyelectrolyte quickly orients in the field direction. The convective velocity of polyelectrolyte inside a porous gel particle is accelerated. The dependence of the transport in the gel particle upon field intensity and molecular size aids in understanding the transport of polyelectrolyte in the packed column. To date, few dynamictudies of polyelectrolyte in a porous gel particle have been attempted for the separation of polyelectrolyte in the packed column. Convective-diffusive transport of DNA is analyzed by physical properties measured experimentally, such as the diffusion coefficient, the electrophoretic mobility and the gel porosity. The purpose of this study is to show how the variation of physicochemical properties in the gel particle affects the separation of DNA from a mixture in the packed column. A theoretical model using the characteristic method is used to calculate the separation point in the packed column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brid, R., Stewart, W. and Lightfoot, E., “Transport Phenomena”, John Wiley and Son, New York, 1960.

    Google Scholar 

  • Cooper, K., “Slow Particle Diffusion in Ion Exchange Columns”,AlChE J. 12, 234 (1972).

    Google Scholar 

  • Dogu, G., Pekediz, A. and Dogu, T., “Dynamic Analysis of Viscous Flow and Diffusion in Porous Solids”,AlChEJ. 35. 1370 (1989).

    CAS  Google Scholar 

  • Hervet, H. and Bean, C. P., “Electrophoretic Mobility of Lambda Phage HIND III and HAE III DNA Fragments in Agarose Gels: A Detailed Study”,Biopolymer. 26, 727 (1987).

    Article  CAS  Google Scholar 

  • Llolzwarth, G., Platt, K. J., McKee, C. B., Whitcomb, R. W. and Crater, G. D., “The Acceleration of Linear DNA during Pulsed-field Gel Electrophoresis”.Biopolymer. 28, 1043 (1989).

    Article  Google Scholar 

  • Lumpkin, 0. J., Dejardin, P. and Zimm, B., “Theory of Gel Electrophoresis of DNA”.Biopolymer. 24, 1573 (1985).

    Article  CAS  Google Scholar 

  • McCabe, W. L. and Smith, J. C., “Unit Operations of Chemical Engineering”, 3rd Ed., McGraw Hill Book Company, New York, NY, 1976.

    Google Scholar 

  • Newman, J., “Electrochemical Systems”, Prentice Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  • Opong, W. S. and Zydney, A. L., “Diffusive and Convective Protein Transport through Asymmetric Membranes”,.AlChE J. 37, 1497 (1991).

    CAS  Google Scholar 

  • Park, Y. and Lim, H. A., “Geometrical Analysis of Dynamic Problem on the Membrane Transport Using Spectral Solution”,KJChE.,12(1). 115 (1995).

    CAS  Google Scholar 

  • Park. Y., Experimental results, 1993.

  • Pecora, R., “DNA: A Model Compound for Solution Studies of Macromolecules”,Science,251, 893 (1991).

    Article  CAS  Google Scholar 

  • Ptassinski, K. J. and Kerknf, P. J. A. M.,Sep. Sci. Technol,27, 995 (1992).

    Article  Google Scholar 

  • Ramkrishina, D. and Amundson, N. R., “Linear Operator Methods in Chemical Engineering with Applications to Transport and Chemical Reaction Systems”, Prentice-Hall, Englewood Cliffs, 1985.

    Google Scholar 

  • Rhee, H., Aris, R. and Amundson, N., “First-order Partial Differential Equations. Volume I Theory and Application of Single Equation”, Prentice-Hall, Englewood Cliffs, 1986.

    Google Scholar 

  • Rudge, S. R. and Ladish, M. R., “Electrochromatography”,Biotech. Progress,4, 123 (1988).

    Article  CAS  Google Scholar 

  • Slater, G. W. and Noolandi, J. (a) “On the Reptation Theory of Gel Electrophoresis”,Biopolymer,25, 431 (1986).

    Article  CAS  Google Scholar 

  • Slater, G. W. and Noolandi, J. (b), “The Biased Reptation Model of DNA Gel Electrophoresis: Mobility vs Molecular Size and Gel Concentration”,Biopolymer,28, 1781 (1989).

    Article  CAS  Google Scholar 

  • Stellwagen, N. C., “Orientation of DNA Molecules in Agarose Gels by Pulsed Electric Fields”,J. of Biomol Struct, and Dynamics,3, 299 (1985).

    CAS  Google Scholar 

  • Suzuki, M. and Fujii, T., “Concentration Dependence of Surface Diffusion Coefficient of Proponic Acid in Activated Carbon Particles”,AIChE J.,6, 380 (1973).

    Google Scholar 

  • Trohalaki, S., Kloczkowski, A., Mark, J. E., Rigby, D. and Roe, R. J., in “Computer Simulation of Polymers (R. J. Roe, ed.)”, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

    Google Scholar 

  • Viovy, J. L., “Pulsed Electrophoresis: Some Implications of Reptation Theories”,Biopolymer,26, 1929 (1987).

    Article  CAS  Google Scholar 

  • Weast, R. C., “Handbook of Chemistry and Physics”, 54th ed., CRC Press, Cleveland, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y. Predictive model for design of a packed column: Parameter analysis. Korean J. Chem. Eng. 12, 213–220 (1995). https://doi.org/10.1007/BF02705649

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705649

Key words

Navigation