Skip to main content
Log in

Exploring effective interactions through transition charge density study of70,72,74,76Ge nuclei

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Transition charge densities (TCD) for 0+ → 2 +1 excitation have been calculated for70,72,74,76Ge nuclei within microscopic variational framework employing 2p 3/2, 1f 5/2, 2p 1/2 and 1g 9/2 valence space. The calculated TCDs for different monopole variants of Kuo interaction are compared with available experimental results. Other systematics like reduced transition probabilitiesB(E2) and static quadrupole momentsQ(2) are also presented. It is observed that the transition density study acts as a sensitive probe for discriminating the response of different parts of effective interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Heisenberg,Advances in nuclear physics (Plenum, New York, 1981) vol. 12, p. 61

    Google Scholar 

  2. A Richter,Prog. Part. Nucl. Phys. 44, 3 (2000)

    Article  ADS  Google Scholar 

  3. P von Neumann-Cosel,Nucl. Phys. A690, 52c (2001);Prog. Part. Nucl. Phys. 44, 49 (2000)

    ADS  Google Scholar 

  4. R A Radhi,Nucl. Phys. A707, 56 (2002)

    ADS  Google Scholar 

  5. [4a]R A Radhiet al, Nucl. Phys. A696, 442 (2001)

    ADS  Google Scholar 

  6. A Yokoyama and K Ogawa,Phys. Rev. C39, 2458 (1989)

    ADS  Google Scholar 

  7. A Yokoyama and K Ogawa,Phys. Rev. C42, 1399 (1990)

    ADS  Google Scholar 

  8. T T S Kuo and G E Brown,Nucl. Phys. A114, 241 (1968)

    ADS  Google Scholar 

  9. L S Kisslinger and R A Sorensen,Rev. Mod. Phys. 35, 853 (1963)

    Article  ADS  Google Scholar 

  10. M Baranger and K Kumar,Nucl. Phys. A110, 529 (1968);A122, 241, 273 (1968)

    ADS  Google Scholar 

  11. T Kishimoto and T Tamura,Nucl. Phys. A192, 246 (1972);A270, 317 (1976)

    ADS  Google Scholar 

  12. A Bohr and B Mottelson,Nuclear structure (Benjamin, Reading, MA, 1975) vol. 2

    Google Scholar 

  13. M Hasegawa, K Kaneko and S Tazaki, arXiv:nucl-th/0008007,Nucl. Phys. A688, 765 (2001)

    ADS  Google Scholar 

  14. M Hasegawa, K Kaneko and S Tazaki,Nucl. Phys. A674, 411 (2000)

    ADS  Google Scholar 

  15. A Abzouzi, E Caurier and A P Zuker,Phys. Rev. Lett. 66, 1134 (1991)

    Article  ADS  Google Scholar 

  16. A Poves and A P Zuker,Phys. Rep. 70, 235 (1981)

    Article  ADS  Google Scholar 

  17. E Caurier, G Martinez-Pinedo, F Nowacki, A Poves, J Retamosa and A P Zuker,Phys. Rev. C59, 2033 (1999)

    ADS  Google Scholar 

  18. S E Koonin, D J Dean and K Langanke,Phys. Rep. 278, 1 (1997)

    Article  ADS  Google Scholar 

  19. M Honma, T Mizusaki and T Otsuka,Phys. Rev. Lett. 77, 3315 (1996)

    Article  ADS  Google Scholar 

  20. S K Dhiman and P K Raina,Phys. Rev. C50, R2660 (1994)

    ADS  Google Scholar 

  21. E Caurier, F Nowacki, A Poves and J Retamosa,Phys. Rev. Lett. 77, 1954 (1996)

    Article  ADS  Google Scholar 

  22. D S Brenner, C Wesselborg, R F Casten, D D Warner and J Y Zhang,Phys. Lett. B243, 1 (1990)

    ADS  Google Scholar 

  23. A J Singh, P K Raina and S K Dhiman,Phys. Rev. C50, 2307 (1994)

    ADS  Google Scholar 

  24. [22a]A J Singh and P K Raina,Phys. Rev. C52, R2342 (1995)

    ADS  Google Scholar 

  25. J P Bazantayet al, Phys. Rev. Lett. 54, 643 (1985)

    Article  ADS  Google Scholar 

  26. P D Duval, D Goutte and M Vergnes,Phys. Lett. B124, 297 (1983)

    ADS  Google Scholar 

  27. O Schwentkeret al, Phys. Rev. Lett. 50, 15 (1983)

    Article  ADS  Google Scholar 

  28. J Wesselinget al, Phys. Lett. B245, 338 (1990)

    ADS  Google Scholar 

  29. [26a]J Wesselinget al, Nucl. Phys. A535, 285 (1991)

    ADS  Google Scholar 

  30. T E Millimanet al, Phys. Rev. C41, 2586 (1990)

    ADS  Google Scholar 

  31. [27a]J P Connellyet al, Phys. Rev. C42, 1948 (1990)

    ADS  Google Scholar 

  32. P K Raina and S K Sharma,Phys. Rev. C37, 1427 (1988)

    ADS  Google Scholar 

  33. T T S Kuo, private communication

  34. D P Ahalpara and K H Bhatt,Phys. Rev. C25, 2072 (1982)

    ADS  Google Scholar 

  35. P N Tripathi and S K Sharma,Phys. Rev. C34, 1081 (1986)

    ADS  Google Scholar 

  36. P K Rath and S K Sharma,Phys. Rev. C38, 2928 (1988)

    ADS  Google Scholar 

  37. J B McGrory, B H Wildenthal and E C Halbert,Phys. Rev. C2, 186 (1970)

    ADS  Google Scholar 

  38. Satish Sharma and Kumar Bhatt,Phys Rev. Lett. 30, 620 (1973)

    Article  ADS  Google Scholar 

  39. Xiangdong Ji and B H Wildenthal,Phys. Rev. C40, 389 (1989)

    ADS  Google Scholar 

  40. C J Lister, P J Ennis, A A Chishti, B J Varley, W Gelletly, H G Price and A N James,Phys. Rev. C42, R1191 (1990)

    ADS  Google Scholar 

  41. H Hendel and B A Brown,Nucl. Phys. A627, 35 (1997)

    ADS  Google Scholar 

  42. K Langanke, E Kolbe and D J Dean, arXiv: nucl-th/0012036,Phys. Rev. C63, 032801 (2001)

    ADS  Google Scholar 

  43. L J Tassie,Aust. J. Phys. 9, 407 (1956)

    ADS  Google Scholar 

  44. B A Brown, R A Radhi and B H Wildenthal,Phys. Rep. 101, 313 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A., Raina, P.K. & Rath, P.K. Exploring effective interactions through transition charge density study of70,72,74,76Ge nuclei. Pramana - J Phys 64, 207–220 (2005). https://doi.org/10.1007/BF02704875

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704875

Keywords

PACS Nos

Navigation