Skip to main content
Log in

Investigation of the electric dipole (E1) excitations in \(^{\mathrm {181}}\)Ta nucleus

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

E1 transition properties such as the reduced transition probabilities, excitation energies and photon–absorption cross-sections have been theoretically investigated for \(^{\mathrm {181}}\)Ta nucleus within the framework of Translational and Galileo Invariant-Quasiparticle Phonon Nuclear Model (TGI-QPNM). The model Hamiltonian includes the single-particle and the isovector dipole–dipole interaction terms along with the restoration forces. The strength of the isovector dipole–dipole interaction has been chosen to be \(\chi = 500/\hbox {A}^{\mathrm {5/3}} MeV \cdot fm^{-2}\). Theoretical calculations show that in addition to the M1 excitations, there is considerable amount of E1 transitions especially between 2.6–3 MeV, which gives remarkable contribution to the fragmentation in the low-energy region of the dipole spectrum. Thus, the agreement between theory and experiment in terms of the fragmentation increases. Furthermore, the photon–absorption cross-sections in the Pigmy Dipole Resonance (PDR) region below the neutron separation energy (\(S_{n}\)) is compatible with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during the current study are available from the corresponding author on reasonable request.]

References

  1. W. Bothe, W. Gentner, Zeitschrift für Physik 106, 236 (1937)

    ADS  Google Scholar 

  2. N. Bohr, Nature 141, 326 (1938)

    ADS  Google Scholar 

  3. A.B. Migdal, Zhurnal Eksperimentalnoi i teoreticheskoi Fiziki 15, 81 (1945)

    Google Scholar 

  4. G. Baldwin, G. Klaiber, Phys. Rev. 7, 3 (1947)

    ADS  Google Scholar 

  5. D. Savran et al., Prog. Part. Nucl. Phys. 70, 210 (2013)

    ADS  Google Scholar 

  6. M. Goldhaber, E. Teller, Phys. Rev. 74, 1046 (1948)

    ADS  Google Scholar 

  7. A. Zilges et al., Phys. Lett. B 542, 43 (2002)

    ADS  Google Scholar 

  8. T. Oishi et al., Phys. Rev. C 93, 034329 (2016)

    ADS  Google Scholar 

  9. G.A. Bartholomew, Annu. Rev. Nucl. Sci. 11, 259 (1961)

    ADS  Google Scholar 

  10. J.S. Brzosko et al., Can. J. Phys. 47, 2849 (1969)

    ADS  Google Scholar 

  11. N.S. Martoranaa et al., Phys. Lett. B 782, 112 (2018)

    ADS  Google Scholar 

  12. L. Pellegri et al., Phys. Lett. B 738, 519 (2014)

    ADS  Google Scholar 

  13. V. Derya et al., Nucl. Phys. A 906, 94 (2013)

    ADS  Google Scholar 

  14. J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010)

    ADS  Google Scholar 

  15. J. Endres et al., Phys. Rev. C 85, 064331 (2012)

    ADS  Google Scholar 

  16. J. Endres et al., Phys. Rev. C 80, 034302 (2009)

    ADS  Google Scholar 

  17. E.G. Lanza et al., Phys. Rev. C 89 (2014)

  18. D. Savran et al., Nucl. Phys. A 788, 165 (2007)

    ADS  Google Scholar 

  19. A. Bracco, E.G. Lanza, A. Tamii, Prog. Part. Nucl. Phys. 106, 360 (2019)

    ADS  Google Scholar 

  20. F.C.L. Crespi et al., Phys. Rev. Lett. 113, 012501 (2014)

    ADS  Google Scholar 

  21. F.C.L. Crespi et al., Phys. Rev. C 91, 024323 (2015)

    ADS  Google Scholar 

  22. M. Krzysiek et al., Phys. Rev. C 93, 044330 (2016)

    ADS  Google Scholar 

  23. U.E.P.J. Berg, Phys. C 4, 359 (1984)

    Google Scholar 

  24. D. Bohle et al., Phys. Lett. B 137, 27 (1984)

    ADS  Google Scholar 

  25. R.D. Heil et al., Nucl. Phys. A 506, 223 (1990)

    ADS  Google Scholar 

  26. A. Zilges et al., Z. Phys. A 340, 155 (1991)

    ADS  Google Scholar 

  27. M. Spieker et al., Phys. Rev. Lett. 114, 192504 (2015)

    ADS  Google Scholar 

  28. F. Iachello, Phys. Lett. B 160, 1 (1985)

    ADS  Google Scholar 

  29. I. Morrison, J. Weise, J. Phys. G: Nucl. Phys. 8, 678 (1982)

    ADS  Google Scholar 

  30. F. Scholtz, F. Hahne, Phys. Lett. B 123, 147 (1983)

    ADS  Google Scholar 

  31. M. Spieker et al., Phys. Rev. Lett. 114 (2015)

  32. G. Co et al., Phys. Rev. C 80, 014308 (2009)

    ADS  Google Scholar 

  33. N. Demirci Saygı, F. Ertuğral Yamaç, A.A. Kuliev, Int. J. Mod. Phys. E (2020)

  34. N. Ryezayeva et al., Phys. Rev. Lett. 89, 272502 (2002)

    Google Scholar 

  35. N. Tsoneva, H. Lenske, Phys. Rev. C 77, 024321 (2008)

    ADS  Google Scholar 

  36. S. Goriely, E. Khan, Nucl. Phys. A 706, 217 (2002)

    ADS  Google Scholar 

  37. V.O. Nesterenko et al., Phys. Rev. Lett. 120, 182501 (2018)

    ADS  Google Scholar 

  38. P.-G. Reinhard et al., Phys. Rev. C 89, 024321 (2014)

    ADS  Google Scholar 

  39. M. Martini et al., Phys. Rev. C 94, 014304 (2016)

    ADS  Google Scholar 

  40. Kai Wang, M. Kortelainen, J. C. Pei, Phys. Rev. C 96, 031301(R) (2017)

  41. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 78, 014312 (2008)

    ADS  Google Scholar 

  42. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. Lett. 105, 022502 (2010)

    ADS  Google Scholar 

  43. E. Tabar et al., Nucl. Phys. A 1001, 121885 (2020)

    Google Scholar 

  44. J. Dudek, T. Werner, J. Phys. G: Nucl. Phys. 4, 1543 (1978)

    ADS  Google Scholar 

  45. P. Möller et al., At Data Nucl Data Tables 59, 185 (1995)

  46. V.G. Soloviev, Theory of Complex Nuclei (Pergamon Press, Oxford, 1976)

    Google Scholar 

  47. N.I. Pyatov, D.I. Salamov, Nucleonica 22, 127 (1977)

    Google Scholar 

  48. N. Çakmak, S. Çakmak, C. Salam, S. Ünlü, Paramana 90, 15 (2018)

    ADS  Google Scholar 

  49. Z. Zenginerler et al., Eur. Phys. J. A 49, 107 (2013)

    ADS  Google Scholar 

  50. E. Guliyev et al., Nucl. Phys. A 915, 78 (2013)

    ADS  Google Scholar 

  51. E. Guliyev et al., Phys. Lett. B 532, 173 (2002)

    ADS  Google Scholar 

  52. E. Guliyev et al., Eur. Phys. J. A 39, 323 (2009)

    ADS  Google Scholar 

  53. E. Tabar et al., Nucl. Phys. A 979, 143 (2018)

    ADS  Google Scholar 

  54. R. Bramblett et al., Phys. Rev. 129, 2723 (1963)

    ADS  Google Scholar 

  55. R. Bergere et al., Nucl. Phys. A 121, 463 (1968)

    ADS  Google Scholar 

  56. G. Gurevich et al., Nucl. Phys. A 351, 257 (1981)

    ADS  Google Scholar 

  57. A. Makinaga et al., Phys. Rev. C 90, 044301 (2014)

    ADS  Google Scholar 

  58. A. Wolpert et al., Phys. Rev. C 58, 765 (1998)

    ADS  Google Scholar 

  59. E. Tabar et al., Int. J. Modern Phys. E 25, 1650053 (2016)

    ADS  Google Scholar 

  60. V. Soloviev, A. Sushkov, Phys. Lett. B 262, 189 (1991)

    ADS  Google Scholar 

  61. I. Hamamoto et al., Phys. Lett. B 226, 17 (1989)

    ADS  Google Scholar 

  62. M.I. Baznat et al., Yad. Fiz. 25, 1155 (1977)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific and Technological Research Council of Turkey (TUBITAK) (Project no. 118F094), Research Fund of the Sakarya University (Project No. 2020-7-25-56) and Council of Higher Education (YÖK) 100/2000 CoHE PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hoşgör.

Additional information

Communicated by Mark Caprio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabar, E., Yakut, H., Kuliev, A.A. et al. Investigation of the electric dipole (E1) excitations in \(^{\mathrm {181}}\)Ta nucleus. Eur. Phys. J. A 56, 271 (2020). https://doi.org/10.1140/epja/s10050-020-00274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00274-x

Navigation