Skip to main content
Log in

Electron-confined LO-phonon scattering in GaAs-Al0.45Ga0.55As superlattice

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We develop a theoretical model to the scattering time due to the electron-confined LO-phonon in GaAs-AlxGa1-xAs superlattice taking into account the sub-band parabolicity. Using the new analytic wave function of electron miniband conduction of superlattice and a reformulation slab model for the confined LO-phonon modes, an expression for the electron-confined LO-phonon scattering time is obtained. In solving numerically a partial differential equation for the phonon generation rate, our results show that forx = 0.45, the LO-phonon in superlattice changes from a bulk-like propagating mode to a confined mode. The dispersion of the relaxation time due to the emission of confined LO-phonons depends strongly on the total energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L Esaki and R Tsu,IBM. J. Res. Dev. 14, 61 (1970)

    Article  Google Scholar 

  2. R Tsu and L Esaki,Appl. Phys. Lett. 10, 246 (1971)

    Article  ADS  Google Scholar 

  3. L Eaves, F W Sheard and G A T Toombs,Band structure engineering in semiconductor microstructures edited by R A Abram and M Jaros (Plenum, New York, 1989) vol. 189, p. 149

    Google Scholar 

  4. E E Mendez,Interfaces, quantum wells, and superlattices edited by C Leavens and R Taylor (Plenum, New York, 1988) vol. 179, p. 227

    Google Scholar 

  5. P Lugli,Band structure engineering in semiconductor microstructures edited by R A Abram and M Jaros (Plenum, New York, 1989) vol. 189, p. 187

    Google Scholar 

  6. C Y Chang, W C Liu, M S Jame, Y H Wang, S Luryi and S M Sze,IEE Electron Device Lett. EDL-7(9), 497 (1986)

    ADS  Google Scholar 

  7. R Dingle,Semiconductors and semimetals (Academic Press, New York, 1987) vol. 24

    Google Scholar 

  8. H C Casey and M B Panich,Heterostructure lasers (Academic Press, New York, 1978)

    Google Scholar 

  9. N Holonyak Jr., R M Kolbas and R D Dupus,IEEE J. Quantum Electron. QE-16, 170 (1980)

    Article  ADS  Google Scholar 

  10. R O Grondin, W Porod, J Ho, Ferry and G J Iafrate,Superlattice and Micro structures 1, 183 (1985)

    ADS  Google Scholar 

  11. E Brown, W D Goodhue, T C L G Sollner,J. Appl. Phys. 64, 1519 (1988)

    Article  ADS  Google Scholar 

  12. F Capasso, K Mohamed and A Cho,J. Appl. Phys. Lett. 48, 478 (1986)

    Article  ADS  Google Scholar 

  13. A C Gossard,Molecular beam epitaxy and heterostructures edited by L L Chang and K Ploog (Martinus Nijhoff Publishers, Dordrecht, 1985) p. 499

    Google Scholar 

  14. J H English, A C Gossard, H L Störmer and K W Baldwin,Appl. Phys. Lett. 50, 1826 (1987)

    Article  ADS  Google Scholar 

  15. L Pfeiffer, K W West, H L Störmer and K W Baldwin,Appl. Phys. Lett. 55, 1988 (1989)

    Article  Google Scholar 

  16. M A Reed, J W Lee and H L Tsai,Appl. Phys. Lett. 49, 158 (1986)

    Article  ADS  Google Scholar 

  17. D Emin and C F Hart,Phys. Rev. B36, 2530 (1987)

    ADS  Google Scholar 

  18. M C Thatam, J F Ryan and C T Foxon,Phys. Rev. Lett. 63, 1637 (1989)

    Article  ADS  Google Scholar 

  19. C Priester, G Allan and H Lannoo,Phys. Rev. B28, 7194 (1983)

    ADS  Google Scholar 

  20. A Seilmcier, H J Hubner, G Absteiter, G Weimann and W Schlapp,Phys. Rev. Lett. 59, 1345 (1987)

    Article  ADS  Google Scholar 

  21. B Jusserand and M Cardona,Light scattering solids V edited by Cardona

  22. G Guntherodt,Topics Apll-Phys. (Springer, Berlin, Heidelberg, 1989) vol. 66, p. 49

    Google Scholar 

  23. M V Klein,IEE J. Quantum Electron. QE-22, 1760 (1986)

    Article  ADS  Google Scholar 

  24. B Jusserand, D Paquet and A Regreny,Phys. Rev. B30, 6245 (1984)

    ADS  Google Scholar 

  25. V M Fomin and E P Pokatilov,Phys. Stat. Sol. B132, 96 (1985)

    Google Scholar 

  26. E P Pokatilov, V M Fomin and N N Semenovkaya,Phys. Rev. B47, 16597 (1993)

    ADS  Google Scholar 

  27. R Lassmig,Phys. Rev. B30, 7132 (1984)

    ADS  Google Scholar 

  28. Xi-Xiq Liang,J. Phys. C4, 9769 (1992)

    Google Scholar 

  29. Wenhui Duan, Jia-Lin Zhu and Bing-Lim Gun,J. Phys. Condens. Matter 5, 2859 (1993)

    Article  ADS  Google Scholar 

  30. R Ferrira and G Bastard,Phys. Rev. B40, 1074 (1989)

    ADS  Google Scholar 

  31. D Aitelhabti, P Vasilopoulos and J F Curie,Can. J. Phys. 68, 286 (1990)

    Google Scholar 

  32. R Fuchs and K L Klieewer,Phys. Rev. A140, 2076 (1965)

    Article  ADS  Google Scholar 

  33. A A Lucas, E Kartheuser and R G Badro,Phys. Rev. B32, 2488 (1970)

    ADS  Google Scholar 

  34. E P Pokatilov and S I Beril,Phys. Stat. Sol. B118, 567 (1983)

    ADS  Google Scholar 

  35. L Wendler,Phys. Stat. Sol. 513, (1985)

  36. J J Licari and R Evrard,Phys. Rev. B15, 2254 (1977)

    ADS  Google Scholar 

  37. Khuang ad B-Fzhu,Phys. Rev. B38, 2183 (1988)

    ADS  Google Scholar 

  38. M Saitoh,J. Phys. C5, 914 (1972)

    ADS  Google Scholar 

  39. G Weber,Phys. Rev. B46, 16171 (1992)

    ADS  Google Scholar 

  40. A Bouchalkla, Dai-Sik Kim and Jin-Joo Song,Quantum well and superlattice physics IV PIE 1675, 74 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abouelaoualim, D. Electron-confined LO-phonon scattering in GaAs-Al0.45Ga0.55As superlattice. Pramana - J Phys 66, 455–465 (2006). https://doi.org/10.1007/BF02704398

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704398

Keywords

PACS Nos

Navigation