Skip to main content
Log in

Strain-induced electronic, optical and thermoelectric properties of SiC-CrX2(X = S, Se) heterostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Combining DFT-based calculations with Boltzman transport formalism, thermoelectric transport properties of semiconducting two-dimensional SiC-CrS2 and SiC-CrSe2 van der Waal heterostructures are investigated in unstrained and strained conditions. We computed electronic, optical and thermoelectric properties of these heterostructures. We find that these heterostructures are direct band semiconductors having type-II band alignment in unstrained conditions. The transition from the direct to the indirect band is observed in SiC-CrSe2 with compressional strain. Switching from type-II to type-I band alignment is also observed under strained conditions in SiC-CrS2. For thermoelectric properties, we have calculated the Seebeck coefficient, electrical conductivity per relaxation time and power factor at 300 K. Analysis of the power factor revealed a preference for n-type doping under zero strain conditions, whereas changes in PF values induced by strain underscored the potential for tuning the thermoelectric performance of these heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data is available upon reasonable request from the corresponding authors.

References

  1. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science. 320, 634 (2008)

    Article  ADS  Google Scholar 

  2. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  3. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  4. G.D. Mahan, H.B. Lyon, J. Appl. Phys. 76, 1899 (1994)

    Article  ADS  Google Scholar 

  5. L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Phys. Rev. B 53, R10493 (1996)

    Article  ADS  Google Scholar 

  6. D.A. Broido, T.L. Reinecke, Appl. Phys. Lett. 67, 100 (1995)

    Article  ADS  Google Scholar 

  7. M. Dresselhaus, G. Chen, M. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  8. T.A. Amollo, G.T. Mola, M.S.K. Kirui, V.O. Nyamori, Crit. Rev. Solid State Mater. Sci. 43, 133 (2018)

    Article  ADS  Google Scholar 

  9. P. Dollfus, V.H. Nguyen, J. Saint-Martin, J. Phys. : Condens. Matter. 27, 133204 (2015)

    ADS  Google Scholar 

  10. Y. Xu, Z. Li, W. Duan, Small. 10, 2182 (2014)

    Article  Google Scholar 

  11. Y.M. Zuev, W. Chang, P. Kim, Phys. Rev. Lett. 102, 096807 (2009)

    Article  ADS  Google Scholar 

  12. F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M.S. Foster, P. Kim, Phys. Rev. Lett. 116, 136802 (2016)

    Article  ADS  Google Scholar 

  13. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  14. J.-W. Jiang, J.-S. Wang, B. Li, Phys. Rev. B 79, 205418 (2009)

    Article  ADS  Google Scholar 

  15. Z. Wang, R. Xie, C.T. Bui, D. Liu, X. Ni, B. Li, J.T.L. Thong, Nano Lett. 11, 113 (2011)

    Article  ADS  Google Scholar 

  16. Y. Anno, K. Takei, S. Akita, T. Arie, Adv. Electron. Mater. 1, 1500175 (2015)

    Article  Google Scholar 

  17. Y. Anno, Y. Imakita, K. Takei, S. Akita, T. Arie, 2D Mater. 4, 025019 (2017)

    Article  Google Scholar 

  18. R. D’Souza, S. Mukherjee, J. Appl. Phys. 124, 124301 (2018)

    Article  ADS  Google Scholar 

  19. D. Dragoman, M. Dragoman, Appl. Phys. Lett. 91, 203116 (2007)

    Article  ADS  Google Scholar 

  20. T. Gunst, T. Markussen, A.-P. Jauho, M. Brandbyge, Phys. Rev. B 84, 155449 (2011)

    Article  ADS  Google Scholar 

  21. H. Sevinçli, C. Sevik, T. Çagin, G. Cuniberti, ˘ Sci. Rep. 3, 1228 (2013)

    Article  ADS  Google Scholar 

  22. H. Sevinçli, G. Cuniberti, Phys. Rev. B 81, 113401 (2010)

    Article  ADS  Google Scholar 

  23. L.M. Sandonas, H. Sevinçli, R. Gutierrez, G. Cuniberti, Adv. Sci. 5, 1700365 (2018)

    Article  Google Scholar 

  24. F. Mazzamuto, V. Hung Nguyen, Y. Apertet, C. Caër, C. Chassat, J. Saint-Martin, P. Dollfus, Phys. Rev. B 83, 235426 (2011)

    Article  ADS  Google Scholar 

  25. Y. Ouyang, J. Guo, Appl. Phys. Lett. 94, 263107 (2009)

    Article  ADS  Google Scholar 

  26. K. Yang, Y. Chen, R. D’Agosta, Y. Xie, J. Zhong, A. Rubio, Phys. Rev. B 86, 045425 (2012)

    Article  ADS  Google Scholar 

  27. Kin Fai Mak and Jie Shan, Photonics and optoelectronics of 2d emiconductor transition metal dichalcogenides. Nat. Photonics. 10(4), 216–226 (2016)

    Article  ADS  Google Scholar 

  28. Z. Ye, T. Cao, K. OâĂŹbrien, H. Zhu, X. Yin, Y. Wang, Louie, and Xiang Zhang. Probing excitonic dark states in single-layer tungsten disulphide. Nature. 513(7517), 214–218 (2014)

    Article  ADS  Google Scholar 

  29. Y. Chengan Lei, T. Ma, X. Zhang, B. Xu, Huang, Y. Dai, Valley polarization in monolayer crx2 (x = s, se) with magnetically doping and proximity coupling. New J. Phys. 22(3), 033002 (2020)

    Article  Google Scholar 

  30. M.R. Habib, S. Wang, W. Wang, H.X.S.M. Obaidulla, A. Gayen, Yahya Khan, Hongzheng Chen, and Mingsheng Xu. Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale. 11(42), 20123–20132 (2019)

    Article  Google Scholar 

  31. E. Yang, H. Ji, Y. Jung, Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J. Phys. Chem. C 119(47), 26374–26380 (2015)

    Article  ADS  Google Scholar 

  32. S.-B. Chen, Z.-Y. Zeng, X.-R. Chen, Strain-induced electronic structures, mechanical anisotropy, and piezoelectricity of transition-metal dichalcogenide monolayer crs2. J. Appl. Phys. 128(12), 125111 (2020)

    Article  ADS  Google Scholar 

  33. A. Anjna Devi, A. Kumar, Singh, P.K. Ahluwalia, A comparative spin dependent first principle study of monolayer (2d), armchair and zigzag nanoribbon (1d) of chromium disulfide (crs2). In AIP Conference Proceedings, volume 2265, page 030701. AIP Publishing LLC, 2020

  34. M. Deniz Çakır, Francois, Peeters, C. Sevik, Mechanical and thermal properties of h-mx2 (m = cr, mo, w; x = o, s, se, te) monolayers: a comparative study. Appl. Phys. Lett. 104(20), 203110 (2014)

    Article  ADS  Google Scholar 

  35. H. S¸ahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80(15), 155453 (2009)

    Article  ADS  Google Scholar 

  36. M. Davila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16(9), 095002 (2014)

    Article  ADS  Google Scholar 

  37. F.-. Zhu, W.-. Chen, Y. Xu, C.-. Gao, D.-d. Guan, C.-h. Liu, D. Qian, S.-C. Zhang, J.-f. Jia, Epitaxial growth of two-dimensional stanene, Nature materials 14 (10) (2015) 1020

  38. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer et al., Buckled silicene formation on ir (111). Nano Lett. 13(2), 685–690 (2013)

    Article  ADS  Google Scholar 

  39. S. Lin, Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116(6), 3951–3955 (2012)

    Article  Google Scholar 

  40. Z. Shi, Z. Zhang, A. Kutana, B.I. Yakobson, Predicting two-dimensional silicon carbide monolayers. ACS nano. 9(10), 9802–9809 (2015)

    Article  Google Scholar 

  41. S. Chabi, H. Chang, Y. Xia, Y. Zhu, From graphene to silicon carbide: ultrathin silicon carbide flakes. Nanotechnology. 27(7), 075602 (2016)

    Article  ADS  Google Scholar 

  42. L. Drissi, F. Ramadan, Many body effects study of electronic & optical properties of silicene–graphene hybrid. Phys. E: Low-dimensional Syst. Nanostruct. 68, 38–41 (2015)

    Article  ADS  Google Scholar 

  43. P. Gori, O. Pulci, M. Marsili, F. Bechstedt, Side-dependent electron escape from graphene-and graphane-like SiC layers. Appl. Phys. Lett. 100(4), 043110 (2012)

    Article  ADS  Google Scholar 

  44. I. Guilhon, L. Teles, M. Marques, R. Pela, F. Bechstedt, Influence of structure and thermodynamic stability on electronic properties of two-dimensional SiC, SiGe, and GeC alloys. Phys. Rev. B 92(7), 075435 (2015)

    Article  ADS  Google Scholar 

  45. T.-Y. Lu, X.-X. Liao, H.-Q. Wang, J.-C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene- like honeycomb structure by strain engineering: a quasiparticle GW study. J. Mater. Chem. 22(19), 10062–10068 (2012)

    Article  Google Scholar 

  46. C. Attaccalite, A. Nguer, E. Cannuccia, M. Gruning, Strong second harmonic generation in SiC, ZnO, GaN two-dimensional hexagonal crystals from first-principles many-body calculations. Phys. Chem. Chem. Phys. 17(14), 9533–9540 (2015)

    Article  Google Scholar 

  47. Z. Xu, Y. Li, Z. Liu, C. Li, Dependence of electronic and optical properties of multilayer SiC and GeC on stacking sequence and external electric field. Phys. E: Low-dimensional Syst. Nanostruct. 79, 198–205 (2016)

    Article  ADS  Google Scholar 

  48. X.-Q. Wang, J.-T. Wang, Structural stabilities and electronic properties of fully hydrogenated SiC sheet. Phys. Lett. A 375(27), 2676–2679 (2011)

    Article  ADS  Google Scholar 

  49. M. Manju, K. Ajith, M. Valsakumar, Strain induced anisotropic mechanical and electronic properties of 2D-SiC. Mech. Mater. 120, 43–52 (2018)

    Article  Google Scholar 

  50. S. Behzad, Direct to indirect band gap transition in two-dimensional germanium carbide through Si substitution. Results Phys. 13, 102306 (2019)

    Article  Google Scholar 

  51. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter. 21, 395502 (2009)

    Article  Google Scholar 

  52. S. Grimme, J. Comput. Chem. 25, 1463 (2004)

    Article  Google Scholar 

  53. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41(2), 1227 (1990)

    Article  ADS  Google Scholar 

  54. Z. Wu, R.E. Cohen, Phys. Rev. B 73(23), 235116 (2006)

    Article  ADS  Google Scholar 

  55. M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110(11), 5029–5036 (1999)

    Article  ADS  Google Scholar 

  56. J.L. Hughes, J.E. Sipe, Calculation of second-order optical response in semiconductors. Phys. Rev. B 53(16), 10751 (1996)

    Article  ADS  Google Scholar 

  57. C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)

    Article  ADS  Google Scholar 

  58. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  59. T. Graf, G.H. Fecher, J. Barth, J. Winterlik, C. Felser, J. Phys. D Appl. Phys. 42, 084003 (2009)

    Article  ADS  Google Scholar 

  60. M.R. Islam, M.S. Islam, N. Ferdous, K.N. Anindya, A. Hashimoto, Spin–orbit coupling effects on the electronic structure of two-dimensional silicon carbide. J. Comput. Electron. 18, 407–414 (2019)

    Article  Google Scholar 

  61. S.B. Sharma, R. Paudel, R. Adhikari, G.C. Kaphle, D. Paudyal, Structural Deformation and Mechanical Response of CrS2, CrSe2 and Janus CrSSe, vol. 146 (Low-dimensional Systems and Nanostructures, Physica E, 2023), p. 115517

    Google Scholar 

  62. X. Yucheng Huang, C. Chen, L. Wang, Q. Peng, Qian, S.F. Wang, Layer-dependent electronic properties of phosphorene-like materials and phosphorene-based Van Der Waals heterostructures. Nanoscale. 9(25), 8616–8622 (2017)

    Article  Google Scholar 

  63. C. Wang, X. Zhou, Y. Pan, J. Qiao, X. Kong, C.C. Kaun, W. Ji, Layer and doping tunable ferromagnetic order in two-dimensional cr S 2 layers. Phys. Rev. B 97(24), 245409 (2018)

    Article  ADS  Google Scholar 

  64. S.B. Sharma, R. Adhikari, K.R. Sigdel, R. Bhatta, Strain induced electronic and optical properties of 2d silicon carbide monolayer using density functional theory. J. Nepal. Phys. Soc. 7(1), 60–65 (2021)

    Article  Google Scholar 

  65. S. Tang, D. Wan, S. Bai, S. Fu, X. Wang, X. Li, J. Zhang, Enhancing phonon thermal transport in 2H-CrX 2 (X = S and Se) monolayers through robust bonding interactions. Phys. Chem. Chem. Phys. 25(33), 22401–22414 (2023)

    Article  Google Scholar 

  66. H. Ali, M. Farooq, F. Khan, S. Ahmad, B. Amin, S. Azam, A.I. Bashir, Density functional theory-based quantum-computational analysis on the strain-assisted phononic, electronic, photocatalytic properties and thermoelectric performance of monolayer Janus SnSSe. Appl. Phys. A 128(7), 553 (2022)

    Article  ADS  Google Scholar 

  67. J. Ye, Q. Luo, H. Li, Z. Feng, X. Dai, Tuning electronic and optical properties of BlueP/MoSe2 Van Der Waals heterostructures by strain and external electric field. Results Phys. 44, 106135 (2023)

    Article  Google Scholar 

  68. A. Šolajić, J. Pešić, Tailoring electronic and optical properties of hBN/InTe and hBN/GaTe heterostructures through biaxial strain engineering. Sci. Rep. 14(1), 1081 (2024)

    Article  ADS  Google Scholar 

  69. M. Singh, R. Kumar, S. Srivastava, K. Tankeshwar, Tuning of thermoelectric performance of CrSe2 material using dimension engineering. J. Phys. Chem. Solids. 172, 111083 (2023)

    Article  Google Scholar 

  70. Y.M. Lin, O. Rabin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, Semimetal–semiconductor transition in Bi 1 – x sb x alloy nanowires and their thermoelectric properties. Appl. Phys. Lett. 81(13), 2403–2405 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R453), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Fawad Khan: Software, Investigation, Writing – original draft. Naseem Fatima: Software, Investigation; Writing – original draft. Sarah Abdullah Alsalhi: Formal analysis, Reviewing and Editing. Adnan Ali Khan: Conceptualization, Validation, Reviewing, Supervision and Project administration.

Corresponding authors

Correspondence to Sarah Abdullah Alsalhi or Adnan Ali Khan.

Ethics declarations

Ethical approval

this work did not require ethical approval.

Conflict of interest

the authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F., Fatima, N., Alsalhi, S.A. et al. Strain-induced electronic, optical and thermoelectric properties of SiC-CrX2(X = S, Se) heterostructures. Appl. Phys. A 130, 421 (2024). https://doi.org/10.1007/s00339-024-07583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07583-8

Keywords

Navigation