Skip to main content
Log in

End depth in steeply sloping rough rectangular channels

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

The paper presents a theoretical model to compute the end depth of a free overfall in steeply sloping rough rectangular channels. A momentum equation based on the Boussinesq approximation is applied to obtain the equation of the end depth. The effect of streamline curvature at the free surface is utilized to develop the differential equation for the flow profile upstream of the free overfall of a wide rectangular channel. As direct solutions for the end depth and flow profile cannot be obtained owing to implicit forms of the developed equations, an auto-recursive search scheme is evolved to solve these equations simultaneously. A method for estimation of discharge from the known end depth and Nikuradse equivalent sand roughness is also presented. Results from the present model correspond satisfactorily with experimental observations except for some higher roughnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali K H M, Sykes A 1972 Free-vortex theory applied to free overfall. J. Hydraul. Div., Am. Soc. Civ. Eng. 98: 973–979

    Google Scholar 

  • Anastasiadou-Partheniou L, Hatzigiannakis E 1995 General end-depth-discharge relationship at free overfall in trapezoidal channel. J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 121: 143–151

    Article  Google Scholar 

  • Anderson M V 1967 Non-uniform flow in front of a free overfall. Acta Polytech. Scand. 42: 1–24

    Google Scholar 

  • ASCE Task Force 1963 Friction factor in open channels. J. Hydraul. Div., Am. Soc. Civ. Eng. 89: 97–143

    Google Scholar 

  • Bauer S W, Graf W H 1971 Free overfall as flow measuring device. J. Irrig. Drain. Div., Am. Soc. Civ. Eng. 97: 73–83

    Google Scholar 

  • Chow V T 1959 Open channel hydraulics (New York: McGraw-Hill)

    Google Scholar 

  • Chow W L, Han T 1979 Inviscid solution for the problem of the free overfall. J. Appl. Mech. 46: 1–5

    MATH  Google Scholar 

  • Clausnitzer B, Hager W H 1997 Outflow characteristics from circular pipe. J. Hydraul. Eng., Am. Soc. Civ. Eng. 123: 914–917

    Article  Google Scholar 

  • Clarke N S 1965 On two-dimensional inviscid flow in a waterfall. J. Fluid Mech. 22: 359–369

    Article  MATH  Google Scholar 

  • Conte S D, de Boor C 1987 Elementary numerical analysis: An algorithmic approach (New York: McGraw-Hill)

    Google Scholar 

  • Davis A C, Ellett B G S, Jacob R P 1998 Flow measurement in sloping channels with rectangular free overfall. J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 760–763

    Article  Google Scholar 

  • Davis A C, Jacob R P, Ellett B G S 1999 Estimating trajectory of free overfall nappe. J. Hydraul. Eng., Am. Soc. Civ. Eng. 125: 79–82

    Article  Google Scholar 

  • Delleur J W, Dooge J C I, Gent K W 1956 Influence of slope and roughness on the free overfall. J. Hydraul. Div., Am. Soc. Civ. Eng. 82: 30–35

    Google Scholar 

  • Dey S 1998a Free overfall in rough rectangular channels: a computational approach. Water, Maritime Energy, Proc. Inst. Civ. Eng. (London) 130: 51–54

    Article  Google Scholar 

  • Dey S 1998b End depth in circular channels. J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 856–863

    Article  Google Scholar 

  • Diskin M H 1961 The end depth at a drop in trapezoidal channels. J. Hydraul. Div., Am. Soc. Civ. Eng. 87: 11–32

    Google Scholar 

  • Fathy A, Shaarawi M A 1954 Hydraulics of free overfall. Proc. ASCE 80, Reston: 1–12

    Google Scholar 

  • Ferro V 1992 Flow measurement with rectangular free overfall. J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 118: 956–970

    Google Scholar 

  • Ferro V 1999 Theoretical end-depth-discharge relationship for free overfall. J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 125: 40–44

    Article  Google Scholar 

  • Gupta R D, Jamil M, Mohsin M 1993 Discharge prediction in smooth trapezoidal free overfall (positive, zero and negative slopes). J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 119: 215–224

    Article  Google Scholar 

  • Hager W H 1983 Hydraulics of the plane overfall. J. Hydraul. Eng., Am. Soc. Civ. Eng. 109: 1683–1697

    Article  Google Scholar 

  • Jaeger C 1957 Engineering fluid mechanics (New York: St. Martin’s Press)

    Google Scholar 

  • Keller R J, Fong S S 1989 Flow measurements with trapezoidal free overfall. J. Irrig. Drain. Eng., Am. Soc. Civ. Eng. 115: 125–136

    Google Scholar 

  • Kraijenhoff D A, Dommerholt A 1977 Brink depth method in rectangular channel. J. Irrig. Drain. Div., Am. Soc. Civ. Eng. 103: 171–177

    Google Scholar 

  • Marchi E 1993 On the free overfall. J. Hydraul. Res. 31: 777–790

    Article  Google Scholar 

  • Markland E 1965 Calculation of flow at a free overfall by relaxation method. Proc. Inst. Civ. Eng. (London) 31: 71–78

    Google Scholar 

  • McCormick J M, Salvadori M G 1964 Numerical methods in Fortran (New Jersey: Prentice-Hall)

    Google Scholar 

  • Montes J S 1992 A potential flow solution for the free overfall. Water, Maritime Energy, Proc. Inst. Civ. Eng. (London) 96: 259–266

    Article  Google Scholar 

  • Murty B S 1994 End depth in trapezoidal and exponential channels. J. Hydraul. Res. 32: 219–232

    Article  Google Scholar 

  • Naghdi P M, Rubin M B 1981 On inviscid flow in a waterfall. J. Fluid Mech. 103: 375–387

    Article  MATH  MathSciNet  Google Scholar 

  • Rajaratnam N, Muralidhar D 1964a End depth for exponential channels. J. Irrig. Drain. Div., Am. Soc. Civ. Eng. 90: 17–36

    Google Scholar 

  • Rajaratnam N, Muralidhar D 1964b End depth for circular channels. J. Hydraul. Div., Am. Soc. Civ. Eng. 90: 99–119

    Google Scholar 

  • Rajaratnam N, Muralidhar D 1968a Characteristics of rectangular free overfall. J. Hydraul. Res. 6: 233–258

    Article  Google Scholar 

  • Rajaratnam N, Muralidhar D 1968b The rectangular free overfall. J. Hydraul. Div., Am. Soc. Civ. Eng. 94: 849–850

    Google Scholar 

  • Rajaratnam N, Muralidhar D 1970 The trapezoidal free overfall. J. Hydraul. Res. 8: 419–447

    Article  Google Scholar 

  • Rajaratnam N, Muralidhar D, Beltaos S 1976 Roughness effects on rectangular overfall. J. Hydraul. Div., Am. Soc. Civ. Eng. 102: 599–614

    Google Scholar 

  • Rouse H 1936 Discharge characteristics of the free overfall. Civ. Eng. 6: 257–260

    Google Scholar 

  • Schlichting H 1960 Boundary layer theory (New York: McGraw-Hill)

    MATH  Google Scholar 

  • Smith C D 1962 Brink depth for a circular channel. J. Hydraul. Div., Am. Soc. Civ. Eng. 88: 125–134

    Google Scholar 

  • Streikoff T, Moayeri M S 1970 Pattern of potential flow in a free overfall. J. Hydraul. Div, Am. Soc. Civ. Eng. 96: 879–901

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, S. End depth in steeply sloping rough rectangular channels. Sadhana 25, 1–10 (2000). https://doi.org/10.1007/BF02703802

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703802

Keywords

Navigation