Skip to main content
Log in

A cohesive finite element formulation for modelling fracture and delamination in solids

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

In recent years, cohesive zone models have been employed to simulate fracture and delamination in solids. This paper presents in detail the formulation for incorporating cohesive zone models within the framework of a large deformation finite element procedure. A special Ritz-finite element technique is employed to control nodal instabilities that may arise when the cohesive elements experience material softening and lose their stress carrying capacity. A few simple problems are presented to validate the implementation of the cohesive element formulation and to demonstrate the robustness of the Ritz solution method. Finally, quasi-static crack growth along the interface in an adhesively bonded system is simulated employing the cohesive zone model. The crack growth resistance curves obtained from the simulations show trends similar to those observed in experimental studies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amazigo J C, Hutchinson J W 1977 Crack-tip fields in steady crack growth with linear strainhardening.J. Mech. Phys. Solids 25: 81–97

    Article  MATH  Google Scholar 

  • Barenblatt G I 1962 The mathematical theory of equilibrium of crack in brittle fracture.Adv. Appl. Mech. 7: 55–129

    Article  MathSciNet  Google Scholar 

  • Bowden P B, Jukes J A 1972 The plastic flow of isotropic polymers.J. Mater. Sci. 7: 52–63

    Article  Google Scholar 

  • Brown N 1987 InEngineered materials handbook (ASM Int.) vol. 2, pp 730–731

    Google Scholar 

  • Camacho G T, Ortiz M 1996 Computational modelling of impact damage in brittle materials.Int. J. Solids Struct. 33: 2899–2938

    Article  MATH  Google Scholar 

  • Chai H 1988 Shear fracture.Int. J. Fracture 37: 137–159

    Google Scholar 

  • Chai H 1992 Micromechanics of shear deformations in cracked bonded joints.Int. J. Fracture 58: 223–239

    Article  Google Scholar 

  • Chai H, Chiang M Y M 1996 A crack propagation criterion based on local shear strain in adhesive bonds subjected to shear.J. Mech. Phys. Solids 44: 1669–1689

    Article  Google Scholar 

  • Chen W F, Han D J 1988Plasticity for structural engineers (Berlin: Springer Verlag)

    MATH  Google Scholar 

  • Chitaley A D, McClintock FA 1971 Elastic-plastic mechanics of steady crack growth under antiplane shear.J. Mech. Phys. Solids 19: 147–163

    Article  MATH  Google Scholar 

  • Drugan W J, Rice J R, Sham T L 1982 Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids.J. Mech. Phys. Solids 30: 447–473

    Article  MATH  Google Scholar 

  • Dugdale D S 1960 Yielding of steel sheets containing slits.J. Mech. Phys. Solids 8: 100–108

    Article  Google Scholar 

  • Gao G, Klein P 1998 Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds.J. Mech. Phys. Solids 46: 187–218

    Article  MATH  Google Scholar 

  • Hibbitt H D, Marcal P V, Rice J R 1970 A finite element formulation for problems of large strain and large displacement.Int. J. Solids Struct. 6: 1069–1086

    Article  MATH  Google Scholar 

  • Kanninen M F, Popelar C H 1985Advanced fracture mechanics (Oxford: University Press)

    MATH  Google Scholar 

  • Kolhe R, Tang S, Hui C Y, Zehnder A T 1999 Cohesive properties of nickel-alumina interfaces determined via simulations of ductile bridging experiments.Int. J. Solids Struct. 36: 5573–5595

    Article  MATH  Google Scholar 

  • Lin G, Kim Y J, Cornec A and Schwalbe K H 1997 Fracture toughness of a constrained metal layer.Comput. Mater. Sci. 9: 36–47

    Article  Google Scholar 

  • Malvern L E 1969Introduction to the mechanics of a continuous medium. (Englewood Cliffs, NJ: Prentice Hall)

    Google Scholar 

  • Malluck J F, King W W 1980 Fast fracture simulated by conventional finite elements: a comparison of two energy-release algorithms. InCrack arrest methodology and application (eds) G T Hahn, M F Kanninen (Philadelphia: Am. Soc. for Testing & Mater.) ASTM STP 711, pp 38–53

    Google Scholar 

  • McMeeking R M, Rice J R 1975 Finite element formulation for problems of large elastic-plastic deformation.Int. J. Solids Struct. 11: 601–616

    Article  MATH  Google Scholar 

  • Narasimhan R, Rosakis A J, Hall J F 1987a A finite element study of stable crack growth under plane stress conditions: Part I Elastic-perfectly plastic solids.J. Appl. Mech. 54: 838–845

    Google Scholar 

  • Narasimhan R, Rosakis A J, Hall J F 1987b A finite element study of stable crack growth under plane stress conditions: Part II Influence of hardening.J. Appl. Mech. 54: 846–853

    Article  Google Scholar 

  • Needleman A 1982 Finite elements for finite strain plasticity problems. InPlasticity of metals at finite strain: Theory, experiment and computation (eds) E H Lee, R L Mallett

  • Needleman A 1987 A continuum model for void nucleation by inclusion debonding.ASME J. Appl. Mech. 54: 525–531

    Article  MATH  Google Scholar 

  • Quinson R, Perez J, Rink M, Pavan A 1997 Yield criteria for amorphous glassy polymers.J. Mater. Sci. 32: 1371–1379

    Article  Google Scholar 

  • Rice J R, Sorensen E P 1978 Continuing crack-tip deformation and fracture for plane strain crack growth in elastic-plastic solids.J. Mech. Phys. Solids 26: 163–186

    Article  MATH  Google Scholar 

  • Roychowdhury S, Narasimhan R 2000a A finite element analysis of quasistatic crack growth in a pressure sensitive constrained ductile layer.Engng. Fract. Mech. 66: 551–571

    Article  Google Scholar 

  • Roychowdhury S, Narasimhan R 2000b A finite element analysis of stationary crack tip fields in a pressure sensitive constrained ductile layer.Int. J. Solids Struct. 37: 3079–3100

    Article  Google Scholar 

  • Sham T L 1983 A finite element study of the asymptotic near-tip fields for mode I plane strain cracks growing stably in elastic-ideally plastic solids.Elastic-plastic fracture: Second symposium, Volume I Inelastic crack analysis, (eds) C F Shih, J P Gudas (Philadelphia: Am. Soc. for Testing & Mater.) ASTM STP 803, pp 52–79

    Google Scholar 

  • Swadener J G, Liechti K M 1998 Asymmetrical shielding mechanism in the mixed-mode fracture of a glass/epoxy interface.ASME J. Appl. Mech. 65: 25–29

    Google Scholar 

  • Tadmor E B, Ortiz M, Phillips R 1996 Quasicontinuum analysis of defects in solids.Philos. Mag. A73: 1529–1563

    Google Scholar 

  • Taylor R L 1979 Computer procedures for finite element analysis.The finite element method (ed.) O C Zienkiewicz, 3rd edn (New Delhi: Tata McGraw Hill) chap. 24

    Google Scholar 

  • Tvergaard V, Hutchinson J W 1992 The relation between crack growth resistance and fracture process parameters in elastic-plastic solids.J. Mech. Phys. Solids 40: 1377–1397

    Article  MATH  Google Scholar 

  • Tvergaard V, Hutchinson J W 1993 The influence of plasticity on mixed mode interface toughness.J. Mech. Phys. Solids 41: 1119–1135

    Article  MATH  Google Scholar 

  • Tvergaard V, Hutchinson J W 1994 Toughness of an interface along a thin ductile layer joining elastic solids.Philos. Mag. A70: 641–656

    Google Scholar 

  • Tvergaard V, Hutchinson J W 1996 On the toughness of ductile adhesive joints.J. Mech. Phys. Solids 44: 789–800

    Article  Google Scholar 

  • Xia L, Shih C F, Hutchinson J W 1995 A computational approach to ductile crack growth under large scale yielding conditions.J. Mech. Phys. Solids 43: 389–413

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, S.R., Narasimhan, R. A cohesive finite element formulation for modelling fracture and delamination in solids. Sadhana 25, 561–587 (2000). https://doi.org/10.1007/BF02703506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703506

Keywords

Navigation