Skip to main content
Log in

Electrochemical machining: The role of steel microstructure in high-rate anodic dissolution

  • Research Summary
  • Steel
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electrochemical machining (ECM) of metals, particularly steels, plays an important role in many industrial microsystem technologies. This paper presents an overview of investigations into the anodic metal dissolution at high current densities of the technically important carbon steel 100Cr6 in aqueous NaCl- and NaNO3-electrolytes. The practice of ECM was simulated in flow channel experiments, where high current densities (up to 70 A/cm2) and turbulent electrolyte flow velocities (7 m/s) were applied. Insoluble carbide particles, enriching at the substrate surface, cause an apparent current efficiency > 100% in NaCl and > 67% in NaNO3 at high current densities. The role of the steel microstructure as controlled by its prior heat treatment is discussed with reference to a qualitative erosion-corrosion model proposed for the anodic dissolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. McGeough,Principles of Electrochemical Machining (New York: Chapman and Hall, 1974).

    Google Scholar 

  2. M. Datta and D. Landolt,Electrochim. Acta, 25 (1980), p. 1255.

    Article  CAS  Google Scholar 

  3. M. Datta and D. Landolt,Electrochim. Acta, 25 (1980), p. 1263.

    Article  CAS  Google Scholar 

  4. M. Datta and D. Harris,Electrochim. Acta, 42 (1997), p. 3007.

    Article  CAS  Google Scholar 

  5. M. Datta and D. Landolt,Electrochim. Acta, 45 (2000), p. 2535.

    Article  CAS  Google Scholar 

  6. A.D. Davydov, E.Y. Grodzinski, and A.N. Kamkin,Elektrokhimiya, 9 (1973), p. 518.

    CAS  Google Scholar 

  7. A.D. Davydov and V.D. Kaschtschejev,Elektrokhimiya, 9 (1974), p. 154.

    CAS  Google Scholar 

  8. A.D. Davydov,Elektrokhimiya, 14 (1978), p. 979.

    CAS  Google Scholar 

  9. T. Haisch, E.J. Mittemeijer, and J.W. Schultze,Z. Metallkd., 92 (2001), p. 417.

    CAS  Google Scholar 

  10. T. Haisch, E.J. Mittemeijer, and J.W. Schultze,Electrochim. Acta, 47 (2001), p. 235.

    Article  CAS  Google Scholar 

  11. M. Datta, H.J. Mathieu, and D. Landolt,J. Electrochem. Soc., 131 (1984), p. 2484.

    Article  CAS  Google Scholar 

  12. J.W. Schultze and V. Tsakova,Electrochim. Acta, 44 (1999), p. 3605.

    Article  CAS  Google Scholar 

  13. M. Datta,IBM J. Res. Develop., 42 (1998), p. 655.

    CAS  Google Scholar 

  14. D.-T. Chin,J. Electrochem. Soc., 119 (1972), p. 1043.

    Article  CAS  Google Scholar 

  15. M. Datta, H.J. Mathieu, and D. Landolt,Electrochim. Acta, 24 (1979), p. 843.

    Article  CAS  Google Scholar 

  16. A.D. Davydov,Protection of Metals, 35 (1999), p. 102.

    CAS  Google Scholar 

  17. M.A. LaBoda et al.,J. Electrochem. Soc., 120 (1973), p. 643.

    Article  CAS  Google Scholar 

  18. D. Landolt,Electrochim. Acta, 32 (1987), p. 1.

    Article  CAS  Google Scholar 

  19. J.K. Higgins,J. Electrochem. Soc., 106 (1959), p. 999.

    Article  CAS  Google Scholar 

  20. Y.A. Popov, S.N. Sidorenko, and A.D. Davydov,Elektrokhimiya, 33 (1997), p. 557.

    Google Scholar 

  21. D.R. Gabe,J. Appl. Electrochem., 4 (1974), p. 91.

    Article  CAS  Google Scholar 

  22. E. Rosset, M. Datta, and D. Landolt,Plat. & Surf. Fin., 71 (1985), p. 60.

    Google Scholar 

  23. D-T. Chin and K-W. Mao,J. Appl. Electrochem., 4 (1974), p. 155.

    Article  CAS  Google Scholar 

  24. K-W. Mao,J. Electrochem. Soc., 118 (1971), p. 1876.

    Article  CAS  Google Scholar 

  25. K-W. Mao,J. Electrochem. Soc., 120 (1973), p. 1056.

    Article  CAS  Google Scholar 

  26. D-T. Chin and A.J. Wallace,J. Electrochem. Soc., 120 (1973), p. 1487.

    Article  CAS  Google Scholar 

  27. M. Datta,IBM J. Res. Develop., 37 (1993), p. 207.

    Article  CAS  Google Scholar 

  28. M. Nagayama and M. Cohen,J. Electrochem. Soc., 109 (1962), p. 781.

    Article  CAS  Google Scholar 

  29. M. Nagayama and M. Cohen,J. Electrochem. Soc., 110 (1963), p. 670.

    Article  CAS  Google Scholar 

  30. D. Landolt, R.H. Muller, and C.W. Tobias,J. Electrochem. Soc., 116 (1969), p. 1384.

    Article  CAS  Google Scholar 

  31. J.P. Hoare and C.R. Wiese,Corros. Sci., 15 (1975), p. 435.

    Article  CAS  Google Scholar 

  32. K-W. Mao, M.A. LaBoda, and J.P. Hoare,J. Electrochem. Soc., 119 (1972), p. 419.

    Article  CAS  Google Scholar 

  33. T.P. Hoar,Corros. Sci., 7 (1967), p. 341.

    Article  CAS  Google Scholar 

  34. M. Datta and D. Landolt,J. Electrochem. Soc., 122 (1975), p. 1466.

    Article  CAS  Google Scholar 

  35. M. Datta and D. Landolt,J. Electrochem. Soc., 124 (1977), p. 483.

    Article  CAS  Google Scholar 

  36. M. Datta and D. Landolt,J. Appl. Electrochem., 7 (1977), p. 247.

    Article  CAS  Google Scholar 

  37. C. Loss and E. Heitz,Werkst. u. Korrosion, 24 (1973), p. 38.

    Article  CAS  Google Scholar 

  38. B.E. Launder and D.B. Spalding,Computer Methods in Applied Mechanics and Engineering, 3 (1974), p. 269.

    Article  Google Scholar 

  39. Ansys theory reference, 9th edition (1999), p. 7.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haisch, T., Mittemeijer, E.J. Electrochemical machining: The role of steel microstructure in high-rate anodic dissolution. JOM 54, 38–41 (2002). https://doi.org/10.1007/BF02700984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700984

Keywords

Navigation