Skip to main content
Log in

Submersed vegetation as habitat for invertebrates in the Hudson River estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We sampled epiphytic and benthic macriinvertebrates in 20 beds of submersed vegetation throughout the Hudson River estuary to assess the importance of plant beds in providing habitat for macroinvertebrates and to determine which characteristics of plant beds affected the density and composition of macroinvertebrates. Macroinvertebrate densities in plant beds were 4–5 times higher, on average, than densities in unvegetated sediments in the Hudson. The macroinvertebrate community in plant beds was dominated by chironomid midges, oligochaete worms, hydroids, gastropods, and amphipods. Many species of macroinvertebrates were found chiefly on submersed plants, showing that plant beds are important in supporting biodiversity in the Hudson. Macroinvertebrates were most numerous in beds with high plant biomass and in the interiors of beds, whereas neither bed size nor position along the length of the estuary affected macroinvertebrate density. Community composition varied strongly with position along the river (freshwater versus brackish), habitat (epiphytic versus benthic), and position within the bed (edge versus interior). Plant biomass also influenced macroinvertebrate community composition, but bed area had relatively little influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Asmus, H. andR. Asmus. 2000. Material exchange and food webs of seagrass beds in the Sylt-Romo Bight: How significant are community changes at the ecosystem level?.Helgoland Marine Research 54:137–150.

    Article  Google Scholar 

  • Bologna, P. A. X. andK. L. Heck. 2002. Impact of habitat edges on density and secondary production of seagrass-associated fauma.Estuaries 25:1033–1044.

    Article  Google Scholar 

  • Bousfield, E. L.. 1973. Shallow-water Gammaridean Amphipoda of New England. 1st edition. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Bowden, D. A., A. A. Rowden, andM. J. Attrill. 2001. Effect of patch size and in-patch location on the infaunal macroinverte-brate assemblages ofZostera marina seagrass beds.Journal of Experimental Marine Biology and Ecology 259:133–154.

    Article  Google Scholar 

  • Caffrey, J. M. 2004. Factors controlling net ecosystem metabolism in US estuaries.Estuaries 27:90–101.

    CAS  Google Scholar 

  • Caraco, N. F., J. Cole, S. Findley, andC. Wigand. 2006. Vascular plants as engineers of oxygen in aquatic systems.BioScience 56:219–225.

    Article  Google Scholar 

  • Cardinale, B. J., T. M. Burton, andV. J. Brady. 1997. The community dynamics of epiphytic midge larvae across the pelagic-littoral interface: Do animals respond to changes in the abiotic environment?Candian Journal of fisheries and Aquatic Sciences 54:2314–2322.

    Article  Google Scholar 

  • Cardinale, B. J., T. J. Burton, andV. J. Brady. 1998. Changes in the abundance and diversity of coastal wetland fauna from the open water/macrophyte edge towards shore.Wetlands Ecology and Management 6:59–68.

    Article  Google Scholar 

  • Cheruvelli, K. S., P. A. Soranno, J. D. Madsen, andM. J. Robertson. 2002. Plant architecture and epiphytic macroinvertebrate communities: The role of an exotic dissected macrophyte.Journal of the North American Benthological Society 21:261–277.

    Article  Google Scholar 

  • Cogerino, L., B. Cellot, andM. Bournaud. 1995. Microhabitat diversity and associated macroinvertebrates in aquatic banks of a large European river.Hydrobiologia 304:103–115.

    Article  Google Scholar 

  • Cole, J. J. andN. F. Caraco. 2006. Primary production and its regulation in the tidal-freshwater Hudson River, p. 107–120.In J. S. Levinton and J. R. Waldman (eds.), The Hudson River Estuary, Cambridge University Press, New York.

    Google Scholar 

  • Collier, K. J., P. D. Champion, andG. F. Croker. 1999. Patch-and reach-scale dynamics of a macrophyte-invertebrate system in a New Zealand Lowland stream.Hydrobiologia 392:89–97.

    Article  Google Scholar 

  • Cooper, J. C., F. R. Cantelmo, andC. E. Newton. 1988. Overview of the Hudson River estuary.American Fisheries Society Monograph 4:11–24.

    Google Scholar 

  • Crowder, L. B. andW. E. Cooper. 1982. Habitat structural complexity and the interaction between bluegills and their prey.Ecology 63:1802–1813.

    Article  Google Scholar 

  • Cyr, H. andJ. A. Downing. 1988. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics.Canadian Journal of Fisheries and Aquatic Sciences 45:976–984.

    Article  Google Scholar 

  • Downing, J. A. 1986. A regression technique for the estimation of epiphytic invertebrate populations.Freshwater Biology 16:161–173.

    Article  Google Scholar 

  • Findlay, S. E. G., W. C. Nieder, E. A. Blair, andD. T. Fischer. 2006. Multi-scale controls on water quality effects of submerged aquatic vegetation in the tidal freshwater Hudson River.Ecosystems 9:84–96.

    Article  CAS  Google Scholar 

  • France, R. 1990. Epiphytic zoobenthos density and biomass within low alkalinity, oligotrophic lakes on the Canadian Shield.Archiv für Hydrobiologie 118:477–499.

    Google Scholar 

  • Gee, G. W. andJ. W. Bauder. 1986. Particle size analysis, p. 383–411.In A. Klute (ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Geyer, W. R. andR. Chant. 2006. The physical oceanography processes in the Hudson River Estuary, p. 24–38.In J. S. Levinton and J. R. Waldman (eds.) The Hudson River Estuary. Cambridge University Press, New York.

    Google Scholar 

  • Gosner, K. L. 1971. Guide to Identification of Marine and Estuarine Invertebrates, Cape Hatteras to Bay of Fundy, 1st edition Wiley-Interscience, New York.

    Google Scholar 

  • Green, J. C. 2005. Velocity and turbulence distribution around lotic macrophytes.Aquatic Ecology 39:1–10.

    Article  Google Scholar 

  • Hauxwell, J., J. Cebrian, andI. Valiela. 2003. EelgrassZostera marina loss in temperate estuaries: Relationship to land-derived nitrogen loads and effect of light limitation imposed by algae.Marine Ecology Progress Series 247:59–73.

    Article  CAS  Google Scholar 

  • Hauxwell, J., C. W. Osenberg, andT. K. Frazer. 2004. Conflicting management goals: Manatees and invasive competitors inhibit restoration of a native macrophyte.Ecological Applications 14: 571–586.

    Article  Google Scholar 

  • Heck, K. L., G. Hays, andR. J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows.Marine Ecology Progress Series 253:123–136.

    Article  Google Scholar 

  • Hemminga, M. A. andC. M. Duarte. 2000. Seagrass Ecology, 1st edition. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Hershey, A. E. 1985. Effects of predatory sculpin on chironomid communities in an Arctic lake.Ecology 66:1131–1138.

    Article  Google Scholar 

  • Holsinger, J. R. 1972. The Freshwater Amphipod Crustaceans (Gammaridae) of North America. Biota of Freshwater Ecosystems Identification Manual 5, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Hughes, A. R., K. J. Bando, L. F. Rodriguez, andS. L. Williams. 2004. Relative effects of grazers and nutrients on seagrasses: A meta-analysis approach.Marine Ecology Progress Series 282:87–99.

    Article  Google Scholar 

  • Humphries, P. 1996. Aquatic macrophytes, macroinvertebrate associations and water levels in a lowland Tasmanian river.Hydrobiologia 321:219–233.

    Article  Google Scholar 

  • James, M. R., M. Weatherhead, C. Stanger, andE. Graynoth. 1998. Macroinvertebrate distribution in the littoral zone of Lake Coleridge, South Island, New Zealand-Effects of Habitat stability, wind exposure, and macrophytes.New Zealand Journal of Marine and Freshwater Research 32:287–305.

    Article  Google Scholar 

  • Kalff, J. 2002. Limnology, 1st edition. Prentice-Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Kathman, R. D. andR. O. Brinkhurst. 1998. Guide to the Freshwater Oligochaetes of North America, 1st edition. Aquatic Resources Center, College Grove, Tennessee.

    Google Scholar 

  • Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith, andJ. C. Stevenson. 2003. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions.Marine Ecology Progress Series 303:1–29.

    Article  Google Scholar 

  • Kornijow, R. 1989. Macrofauna of elodeids of two lakes of different trophy. I. Relationships between plants and structure of fauna colonizing them.Ekologia Polska 37:31–48.

    Google Scholar 

  • Kurashov, E. A., I. V. Telesh, V. E. Panov, N. V. Usenko, andM. A. Rychkova. 1996. Invertebrate communities associated with macrophytes in Lake Ladoga: Effects of environmental factors.Hydrobiologia 322:49–55.

    Article  Google Scholar 

  • Lianso, R., M. Southerland, J. Vølstad, D. Strebel, and G. Mercurio. 2003. Hudson River estuary biocriteria final report. Report to the New York State Department of Environmental Conservation, Albany, New York.

  • MacArthur, R. H. andE. O. Wilson. 1967. The Theory of Island Biogeography, 1st edition. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Madsen, T. V. andE. Warncke. 1983. Velocities of currents around and within submerged aquatic vegetation.Archiv für Hydrobiologie 97:389–394.

    Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch, andD. F. Westlake. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes.Hydrobiologia 444:71–84.

    Article  Google Scholar 

  • Madsen, J. D., J. W. Sutherland, J. A. Bloomfield, L. W. Eichler, andC. W. Boylen. 1991. The decline of native vegetation under dense Eurasian watermilfoil canopies.Journal of Aquatic Plant Management 29:94–99.

    Google Scholar 

  • Marklund, O., H. Sandsten, L. A. Hansson, andI. Blindow. 2002. Effects of waterfowl and fish on submerged vegetation and macroinvertebrates.Freshwater Biology 47:2049–2059.

    Article  Google Scholar 

  • McCune, B. andJ. B. Grace. 2002. Analysis of Ecological Communities, 1st edition. MjM Software Design, Gleneden Beach, Oregon.

    Google Scholar 

  • Menzie, C. A. 1980. The chironomid fauna (Insecta: Diptera) and other fauna of aMyriophyllum spicatum L. plant bed in the lower Hudson River.Estuaries 3:38–54.

    Article  Google Scholar 

  • Mills, E. L., D. L. Strayer, M. D. Scheuerell, andJ. T. Carlton. 1996. Exotic species in the Hudson River basin—a history of invasions and introductions.Estuaries 19:814–823.

    Article  Google Scholar 

  • Miranda, L. E., M. P. Driscoll, andM. S. Allen. 2000. Transient physicochemical microhabitats facilitate fish survival in inhospitable aquatic plant stands.Freshwater Biology 44:617–628.

    Article  Google Scholar 

  • Mittelbach, G. G. 1981. Patterns of invertebrate size and abundance in aquatic habitats.Canadian Journal of Fisheries and Aquatic Sciences 38:896–904.

    Article  Google Scholar 

  • Nieder, W. C., E. Barnaba, S. E. G. Findlay, S. Hoskins, N. Holochuck, andE. A. Blair. 2004. Distribution and abundance of submerged aquatic vegetation andTrapa natans in the Hudson River estuary.Journal of Coastal Research 45:150–161.

    Article  Google Scholar 

  • Parker, J. D., J. E. Duffy, andR. J. Orth. 2001. Plant species diversity and composition: Experimental effects on marine epifaunal assemblages.Marine Ecology Progress Series 224:55–67.

    Article  Google Scholar 

  • Peckarsky, B. L., P. R. Fraissinet, M. A. Penton, andD. J. Conklin. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Petticrew, E. L. andJ. Kalff. 1992. Water flow and clay retention in submerged macrophyte beds.Canadian Journal of Fisheries and Aquatic Sciences 49:2483–2489.

    Article  Google Scholar 

  • Pieczynska, E., A. Kolodziejczyk, andJ. I. Rybak. 1998. The responses of littoral invertebrates to eutrophication-linked changes in plant communities.Hydrobiologia 391:9–21.

    Article  Google Scholar 

  • Pokorný, J. andJ. Kvét. 2004. Aquatic plants and lake ecosystems, p. 309–340.In P. E. O’Sullivan and C. S. Reynolds (eds.), The Lakes Handbook, Volume 1: Limnology and Limnetic Ecology. Blackwell, Malden, Massachusetts.

    Google Scholar 

  • Rodriguez, C. F., E. Becares, M. Fernandez-Alaez, andC. Fernandez-Alaez. 2005. Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish.Biological Invasions 7:75–85.

    Article  Google Scholar 

  • Rozas, L. P. andW. E. Odum. 1988. Occupation of submerged aquatic vegetation by fishes—testing the roles of food and refuge.Oecologia 77:101–106.

    Article  Google Scholar 

  • Sand-Jensen, K., T. Riis, O. Vestergaard, andS. E. Larsen. 2000. Macrophyte decline in Danish lakes and streams over the past 100 years.Journal of Ecology 88:1030–1040.

    Article  Google Scholar 

  • Short, F. T. andS. Wyliie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses.Environmental Conservation 23:17–27.

    Article  Google Scholar 

  • Sloey, D., T. Schenck, andR. Narf. 1997. Distribution of aquatic invertebrates within a dense bed of Eurasian milfoil (Myriophyllum spicatum L).Journal of Freshwater Ecology 12:303–313.

    CAS  Google Scholar 

  • Smith, D. G. 1995. Keys to the Freshwater Macroinvertebrates of Massachusetts, 2nd edition. Douglas G. Smith, Sunderland, Massachusetts.

    Google Scholar 

  • Soszka, G. J. 1975. Ecological relationships between invertebrates and submerged macrophytes in the lake littoral.Ekologia Polska 23:371–391.

    Google Scholar 

  • Strayer, D. L., C. Lutz, H. M. Malcom, K. Munger, andW. H. Shaw. 2003. Invertebrate communities associated with a native (Vallisneria americana) and an alien (Trapa natans) macrophyte in a large river.Freshwater Biology 48:1938–1949.

    Article  Google Scholar 

  • Strayer, D. L., H. M. Malcom, R. E. Bell, S. Carbotte, andF. Nitsche. 2006. Combining geophysical and biological information to define benthic habitats in the Hudson River.Freshwater Biology 51:25–38.

    Article  Google Scholar 

  • Strayer, D. L. andL. C. Smith. 2001. The zoobenthos of the freshwater tidal Hudson River and its response to the zebra mussel (Dreissena polymorpha) invasion.Archiv für Hydrobiologie Supplementband 139:1–52.

    Google Scholar 

  • Tolonen, K. T., H. Hamalainen, I. J. Holopainen, andJ. Karjalainen. 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system.Archiv für Hydrobiologie 152:39–67.

    Google Scholar 

  • Tolonen, K. T., H. Hamalainen, I. J. Holopainen, K. Mikkonen, andJ. Karjalainen. 2003. Body size and substrate association of littoral insects in relation to vegetation structure.Hydrobiologia 499:179–190.

    Article  Google Scholar 

  • Turner, M. G., R. H. Gardner, andR. V. O’Neill. 2001. Landscape Ecology in Theory and Practice, 1st edition. Springer-Verlag, New York.

    Google Scholar 

  • van Houte-Howes, K. S. S., S. J. Turner, andC. A. Pilditch. 2004. Spatial differences in macroinvertebrate communities in intertidal seagrass habitats and unvegetated sediment in three New Zealand estuaries.Estuaries 27:945–957.

    Google Scholar 

  • Wells, A. W. andJ. R. Young. 1992. Long-term variability and predictability of Hudson River physical and chemical characteristics, p. 29–58.In C. L. Smith (ed.), Estuarine Research in the 1980s. State University of New York Press, Albany, New York.

    Google Scholar 

  • Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems, 3rd edition. Academic Press, San Diego, California.

    Google Scholar 

  • Wiederholm, T. (ed.). 1983. Chironomidae of the Holarctic region: Keys and diagnoses. Part 1. Larvae,Entomologica Scandinavica Supplement 19:11–457.

    Google Scholar 

  • Wollheim, W. M. andJ. R. Lovvern. 1996. Effects of macrophyte growth forms on invertebrate communities in saline lakes of the Wyoming High Plains.Hydrobiologia 323:83–96.

    Article  Google Scholar 

  • Xie, Z. C., K. Ma, R. Q. Liu, T. Tao, C. Jing, andS. W. Shu. 2006. Effect of plant architecture on the structure of epiphytic macroinvertebrate communities in a Chinese lake.Journal of Freshwater Ecology 21:131–137.

    Google Scholar 

  • Zhao, X. X., M. G. Fox, andD. C. Lasenby. 2006. Effect of prey density, prey mobility and habitat structure on size selection and consumption of amphipods by a benthic feeding fish.Archiv für Hydrobiologie 165:269–288.

    Article  Google Scholar 

  • Zippen, C. 1958. The removal method of population estimation.Journal of Wildlife Management 22:82–90.

    Article  Google Scholar 

Source of Unpublished Materials

  • Erséus, C. personal communication. Göteborgs Universitet, Department of Zoology Systematics and Biodiversity, Box 463, SE-405 30 Göteborg, Sweden

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Strayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strayer, D.L. Submersed vegetation as habitat for invertebrates in the Hudson River estuary. Estuaries and Coasts: JERF 30, 253–264 (2007). https://doi.org/10.1007/BF02700168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700168

Keywords

Navigation