Skip to main content
Log in

Model for the propagation of a stationary reaction front in a viscoelastic medium

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A coupled thermomechanical model for the propagation of a stationary chemical-reaction wave in a condensed medium is developed. Stresses and strains that arise during the reaction as a result of thermal and “concentration” expansion of the material are related by Maxwell’s equations for a viscoelastic medium. The expression for the heat flux is written as a generalized Fourier law with finite relaxation time for the heat flux. It is shown that deformation of the material in the reaction zone can lead to an apparent change in the activation energy, heat effect, and other characteristics of the system. This model allows for the existence of two different — subsonic and supersonic — regimes of propagation of the front, as well as the model in which the stress- and strain-tensor components are related by a generalized Hooke’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Timokhin and A. G. Knyazeva, “Reaction-front propagation regimes in a coupled thermomechanical model of solid-state combustion,”Khim. Fiz.,15, No. 10, 1497–1514 (1996).

    Google Scholar 

  2. A. G. Knyazeva “Velocity of the simplest solid-state chemical reaction front and internal mechanical stresses,”Fiz. Goreniya Vzryva,30, No. 1, 44–54 (1994).

    Google Scholar 

  3. A. G. Knyazeva and E. A. Dyukarev, “Stationary wave of a chemical reaction in a deformable medium with finite relaxation time of the heat flux,”Fiz. Goreniya Vzryva,31, No. 3, 38–46 (1995).

    Google Scholar 

  4. E. A. Dyukarev and A. G. Knyazeva, “Thermomechanical model of autowave propagation of low temperature reactions with regard to fracture,” in: Proc. of 16th Int. Colloquium on the Dynamics of Explosions and Reactive Systems (August 3–8, 1997, Cracov. Poland), (1997), pp. 263–265.

  5. B. Boley and J. Winer,Theory of Thermal Stresses, Wiley, New York (1960).

    MATH  Google Scholar 

  6. V. S. Eremeev,Diffusion and Stresses [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  7. A. G. Knyazeva,Introduction to the Locally Equilibrium Thermodynamics of Physicochemical Reactions in Deformable Media [in Russian]. Izd. Tomsk. Univ., Tomsk (1996).

    Google Scholar 

  8. V. A. Podergin,Metallothermic Systems [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  9. N. S. Enikolopov, “Solid-state chemical reactions and new technologies,”Usp. Khim.,16, No. 3, 586–594 (1991).

    Google Scholar 

  10. I. P. Bazarov,Thermodynamics [in Russian], Vysshaya Shkola, Moscow (1991).

    Google Scholar 

  11. H. Eyring, S. H. Lin, and S. M. Lin.Basic Chemical Kinetics [Russian translation] Mir, Moscow (1983).

    Google Scholar 

  12. L. I. Sedov,Mechanics of Continuous Media [in Russian], Vol. 1. Nauka, Moscow (1973).

    Google Scholar 

  13. S. P. Timoshenko and J. Goodier.Theory of Elasticity, McGraw-Hill, New York (1970).

    MATH  Google Scholar 

  14. N. I. Nikitenko,Coupled and Inverse Problems of Heat and Mass Transfer [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  15. V. F. Gribanov and N. G. Panichkin.Coupled and Dynamic Problems of Thermoelasticity [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  16. S. L. Sobolev, “Transfer processes and traveling waves in locally nonequilibrium systems,”Usp. Fiz. Nauk,161, No. 3, 5–29 (1991).

    Google Scholar 

  17. B. V. Novozhilov, “Propagation velocity of a chemical-reaction front in a condensed phase,”Dokl. Akad. Nauk SSSR,141, No. 1, 151–153 (1961).

    Google Scholar 

  18. N. S. Enikolopyan and A. A. Mkhitaryan, “Low-temperature detonation waves in solids,”Dokl. Akad. Nauk SSSR,309, No. 2, 384–387 (1989).

    Google Scholar 

  19. V. M. Kholopov and S. I. Khudyaev, “Nonuniqueness of a stationary combustion wave,”Mat. Model.,10, No. 5, 91–108 (1988).

    Google Scholar 

  20. V. S. Berman, “Propagation of the front of an exothermicn-stage sequential reaction,”Fiz. Goreniya Vzryva,11, No. 5, 693–702 (1975).

    Google Scholar 

  21. V. K. Smolyakov, E. A. Nekrasov, and Yu. M. Maksimov, “Simulation of gasless combustion with phase transformations,”Fiz. Goreniya Vzryva,20, No. 2, 63–73 (1984).

    Google Scholar 

  22. E. A. Nekrasov amd A. M. Timokhin, “Theory of thermal wave propagation of multistage reactions described by simple empirical schemes,”Fiz. Goreniya Vzryva,22, No. 4, 48–54 (1986).

    Google Scholar 

  23. T. P. Ivleva, A. G. Merzhanov, and K. G. Shkadinskii “New type of nonuniqueness of stationary regimes of combustion wave propagation,”Dokl. Akad. Nauk SSSR,256, No. 4, 897–900 (1981).

    Google Scholar 

  24. A. G. Knyazeva and V. T. Kuznetsov, “Failure of the surface layer of nitroglycerin powder during ignition at various initial temperatures,”Fiz. Goreniya Vzryva,31, No. 4, 10–19 (1995).

    Google Scholar 

  25. A. G. Knyazeva and E. A. Dyukarev, “Model of detonation of lead azide (PbN3) with regard to fracture,”Int. J. Fracture,100, No. 2, 197–205 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromFizika Goreniya i Vzryva, Vol. 36, No. 4. pp. 41–51, July–August, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knyazeva, A.G., Dyukarev, E.A. Model for the propagation of a stationary reaction front in a viscoelastic medium. Combust Explos Shock Waves 36, 452–461 (2000). https://doi.org/10.1007/BF02699475

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699475

Keywords

Navigation