Skip to main content
Log in

Gas backmixing in the dense region of a circulating fluidized bed

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The gas backmixing characteristics in a circulating fluidized bed (0.1 m-IDx5.3-m high) have been determined. The gas backmixing coefficient (Dba) from the axial dispersion model in a low velocity fluidization region increases with increasing gas velocity. The effect of gas velocity onD ba in the bubbling bed is more pronounced compared to that in the Circulating Fluidized Bed (CFB). In the dense region of a CFB, the two-phase model is proposed to calculate Dbc from the two-phase model and mass transfer coefficient (k) between the crowd phase and dispersed phase. The gas backmixing coefficient and the mass transfer coefficient between the two phases increase with increasing the ratio of average particle to gas velocities (Up/Ug).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos, G., Rhodes, M. J. and Mineo, H., “Gas Mixing in Gas-Solid Risers,”Chem. Eng Sci.,48, 943 (1993).

    Article  CAS  Google Scholar 

  • Arena, U., “Circulating Fluidized Bed,” Editors J. R. Grace, A. A. Avidan and T. M. Knowlton, Blackie A & P, London, chap 3 (1997).

    Google Scholar 

  • Brereton, C. M. H., Grace, J. R. and Yu, J., “Axial Gas Mixing in a CFB,” CFB Technol. II, Editors P. Basu and J. F. Large, Pergamon Press, New York, 307 (1988).

    Google Scholar 

  • Cankurt, N. T. and Yerushalmi, J., “Gas Backmixing in High Velocity Fluidized Beds,” Fluidization, Editors J. F. Davidson and D. L. Kearins, Cambridge Univ. Press, London, 387 (1978).

    Google Scholar 

  • Haider, A. and Levenspiel, O., “Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles,”Powder Technol,58, 63 (1989).

    Article  CAS  Google Scholar 

  • Ishii, H. and Horio, M., “The Flow Structure of a Circulating Fluidized Bed,”Adv. Powder Technol,2, 25 (1991).

    Google Scholar 

  • Latham, R. and Potter, O. E., “Backmixing of Gas in a 6-in Diameter Fluidized Bed,”Chem. Eng. J.,1, 152 (1970).

    Article  Google Scholar 

  • Lee, J. S. and Kim, S. D., “The Vertical Pneumatic Transport of Cement Raw Meal,”HWAHAK KONGHAK,20, 207 (1982).

    Google Scholar 

  • Lee, G. S. and Kim, S. D., “Gas Mixing in Slugging and Turbulent Fluidized Beds,”Chem. Eng Comm.,86, 91 (1989).

    Article  CAS  Google Scholar 

  • Li, Y and Wu, P., “A Study on Axial Gas Mixing in a Fast Fluidized Bed,”CFB Technol. III, Editors P. Basu, M. Horio, M. Hasatani, Pergamon Press, New York, 581 (1991).

    Google Scholar 

  • Li, J. and Weinstein, H., “An Experimental Comparison of Gas Backmixing in Fluidized Beds Across the Regime Spectrum,”Chem. Eng Sci.,44, 1697 (1989).

    Article  CAS  Google Scholar 

  • Mason, E. A., Sc. D. Thesis, MIT, Cambridge, USA (1950) (cited in van Deemter (1961)).

    Google Scholar 

  • Namkung, W. and Kim, S. D., “Gas Mixing in the Upper Dilute Region of a Circulating Fluidized Bed,” CFB Technol. V, Editors M. Kwauk and J. Li, Science Press, Beijing, 134 (1997).

    Google Scholar 

  • Namkung, W. and Kim, S. D., “Gas Backmixing in a Circulating Fluidized Bed,”Powder Technol,99(1), 70 (1998a).

    Article  CAS  Google Scholar 

  • Namkung, W. and Kim, S. D., “Gas Mixing Characteristics in a Fast Fluidized Bed,”HWAHAK KONGHAK,36, 797 (1998b).

    CAS  Google Scholar 

  • Namkung, W., Kim, S. W. and Kim, S. D., “Flow Regimes and Axial Pressure Profiles in a Circulating Fluidized Bed,”Chem. Eng J., in press (1999).

  • Nguyen, N. V, Whitehead, A. B. and Potter, O. E., “Gas Backmixing Solid Movement, and Bubble Activities in Large Scale Fluidized Beds,”AIChE J.,23, 913 (1977).

    Article  CAS  Google Scholar 

  • Nguyen, H. V, Potter, O. E., Dent, D. C. and Whitehead, A. B., “Gas Backmixing in Large Scale Fluidized Beds Containing Tube Assemblies,”AIChE J.,27, 509 (1981).

    Article  CAS  Google Scholar 

  • Overchasier, R. H., Todd, D. B. and Olney, R. B., “Some Effects of Baffles on a Fluidized System,”AIChE J.,5, 54 (1957).

    Article  Google Scholar 

  • van Deemter, J. J., “Mixing and Contacting in Gas-Solid Fluidized Beds,”Chem. Eng Sci.,13, 143 (1961).

    Article  Google Scholar 

  • Van Deemter, J. J., “Fluidization,” Editors J. F. Davidson, D. Harrison and R. Clift, Academic Press, London, Chap. 7 (1985).

    Google Scholar 

  • Werther, J., Hartge, E. U. and Kruse, M., “Radial Gas Mixing in the Upper Dilute Core of a Circulating Fluidized Bed,”Powder Technol,70, 293 (1992).

    Article  CAS  Google Scholar 

  • Wippen, D., Wittemann, K., Kuhne, J., Helmrich, H. and Schugerl, K., “Characterization of Fluidized Bed Reactors with Gas Tracer Measurements,”Chem. Eng. Comm.,10, 307 (1981).

    Article  Google Scholar 

  • Yerushalmi, J., “Gas Mixing in High Velocity Fluidized Bed,” Gas Fluidization Technology, Eds. D. Geldart, Wiley, Chichester, U.K., Chap. 7 (1986).

    Google Scholar 

  • Zhang, W., Tung, Y. and Johnsson, F., “Radial Voidage Profiles in Fast Fluidized Beds of Different Diameters,”Chem. Eng. Sci.,46, 3045(1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Done Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namkung, W., Kim, S.D. Gas backmixing in the dense region of a circulating fluidized bed. Korean J. Chem. Eng. 16, 456–461 (1999). https://doi.org/10.1007/BF02698268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698268

Key words

Navigation