Skip to main content
Log in

Mathematical programming approaches to the synthesis of chemical process systems

  • Featured Review
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a review of advances that have taken place in the mathematical programming approach to process design and synthesis. A review is first presented on the algorithms that are available for solving MINLP problems, and its most recent variant, Generalized Disjunctive Programming models. The formulation of superstructures, models and solution strategies is also discussed for the effective solution of the corresponding optimization problems. The rest of the paper is devoted to reviewing recent mathematical programming models for the synthesis of reactor networks, distillation sequences, heat exchanger networks, mass exchanger networks, utility plants, and total flowsheets. As will be seen from this review, the progress that has been achieved in this area over the last decade is very significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

Mathematical Programming

  • Balas, E., Ceria, S. and Cornuejols, G. A., “Lift-and-Project Cutting Plane Algorithm for Mixed 0-1 Programs,”Mathematical Programming,58,295 (1993).

    Article  Google Scholar 

  • Bazaraa, M. S., Sherali, H. D. and Shetty, C. M., “Nonlinear Programming,” John Wiley (1994).

  • Brooke, A., Kendrick, D. and Meeraus, A., “GAMS-A User’s Guide,” Scientific Press, Palo Alto (1992).

    Google Scholar 

  • Chvatal, “Linear Programming,” Freeman (1983).

  • Fletcher, R., “Practical Methods of Optimization,” Wiley (1987).

  • Floudas, C. A., Adjiman, C. S., Androulakis, I. P. and Maranas, C. D., “A Global Optimization Method, BB, for Process Design,”Suppl. Comp. Chem. Eng.,20, S419 (1996).

    Article  Google Scholar 

  • Fourer, R., Gay, D. M. and Kernighan, B. W., “AMPL: A Modeling Language for Mathematical Programming,” Duxbury Press, Belomont, CA (1992).

    Google Scholar 

  • Gill, P. E., Murray, W. and Wright, M. H., “Practical Optimization,” Academic Press, London (1981).

    Google Scholar 

  • Goldberg, D. E., “Genetic Algorithms in Search, Optimisation and Machine Learning,” Addison-Wesley, Reading Mass. (1989).

    Google Scholar 

  • Grossmann, I. E. and Biegler, L. T., “Optimizing Chemical Processes,”Chemtech,25, 12, 27 (1995)

    Google Scholar 

  • Grossmann, I. E. (ed.), “Global Optimization in Engineering Design,” Kluwer, Dordrecht (1996).

    Google Scholar 

  • Han, S. P., “Superlinearly Convergent Variable Metric Algorithms for General Nonlinear Programming Problems,”Math Progr.,11, 263 (1976).

    Article  Google Scholar 

  • Horst, R. and Pardalos, P. M. (eds), “Handbook of Global Optimization,” Kluwer(1995).

  • Horst, R. and Tuy, H., “Global Optimization,” Springer-Verlag (1993).

  • Kirkpatrick, S., Gelatt, C. D. and Vechi, M. P., “Optimization by Simulated Annealing,”Science,220, 671 (1983).

    Article  Google Scholar 

  • Kondili, E., Pantelides, C. C. and Sargent, R. W. H., “A General Algorithm for Short-Term Scheduling of Batch Operations-I. MILP Formulation,”Comp. & Chem. Eng.,17(2), 211 (1993).

    Article  Google Scholar 

  • Lustig, J., Marsten, R. and Shanno, D., “Interior Point Methods for Linear Programming: Computational State of the Art,”ORSA Journal on Computing, Winter,6(1), 1(1994).

    Google Scholar 

  • Marsten, R., Saltzman, M., Lustig, J. and Shanno, D., “Interior Point Methods for Linear Programming: Just Call Newton, Lagrange and Fiacco and McCormick”Interfaces,20(4), 116 (1990).

    Google Scholar 

  • More, J. and Wright, M., “Optimization Software Guide,” SIAM (1993).

  • Minoux, M., “Mathematical Programming: Theory and Algorithms,” John Wiley (1986).

  • Murtagh, B. A. and Saunders, M. A., “Large-Scale Linearly Constrained Optimization,”Mathematical Programming,14, 41 (1978).

    Article  Google Scholar 

  • Murtagh, B. A. and Saunders, M. A., “A Projected Lagrangian Algorithm and its Implementation for Sparse Nonlinear Constraints,” Mathematical Programming Study,16, 84 (1982).

    Google Scholar 

  • Nemhauser, G. L., Rinnory, Kan, A. H. G. and Todd, M. J. (eds), “Optimization,” Handbook in Operations Research and Management Science, North Holland, Amsterdam,1 (1989).

    Google Scholar 

  • Nemhauser, G. L. and Wolsey L. A., “Integer and Combinatorial Optimization” Wiley-Interscience, New York (1988).

    Google Scholar 

  • Powell, M. J. D., “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,” In Numerical Analysis, Dundee (1977). Watson, G. A. (ed.), “Lecture Notes in Mathematics 630,” Springer-Verlag, Berlin (1978).

    Google Scholar 

  • Pinto, J. and Grossmann, I. E., “Assignment and Sequencing Models for the Scheduling of Chemical Processes,”Annals of Operations Research,81, 433 (1998).

    Article  Google Scholar 

  • Quesada, I. E. and Grossmann, I. E., “A Global Optimization Algorithm for Linear Fractional and Bilinear Programs,”Journal of Global Optimization,6, 39 (1995).

    Article  Google Scholar 

  • Reklaitis G. V., “Progress and Issues in Computer-Aided Batch Process Design,” FOCAPD Proceedings, Elsevier, NY, 241 (1990).

    Google Scholar 

  • Sahinids, N. V and Ryoo, H. S., “Global Optimization of Non-convex NLP’s and MINLP’s with Applications in Process Design,”Comp. Chem. Eng.,19, 551 (1995).

    Article  Google Scholar 

  • Saigal, “Linear Programming : A Modern Integrated Analysis,” Kluwer Academic Publishers (1995).

  • Schittkowski, K., “The Nonlinear Programming Method of Wilson, Han and Powell with an Augmented Lagrangian Type Line Search Function. Part 1 : Convergence Analysis,” Numerische Mathematic,38, 83; “Part 2 : An Efficient Implementation with Linear Least Squares Subproblems” op. cit., 115 (1981).

  • Shah, N., “Single and Multisite Planning and Scheduling : Current Status and Future Challenges,” FOCAPO Proceedings (1998).

  • Smith, E. and Pantelides, C., “Global Optimisation of General Process Models,” in Grossmann, I. E. (ed.), “Global Optimization in Engineering Design,” Kluwer, Dordrecht, 355 (1996).

    Google Scholar 

  • Vasantharajan, S., Viswanathan, J. and Biegler, L. T., “Reduced Successive Quadratic Programming Implementation for Largescale Optimization Problems with Smaller Degrees of Freedom,”Computers and Chemical Engineering,14, 907 (1990).

    Article  CAS  Google Scholar 

  • Visweswaran, C. and Floudas, C. A., “A Global Optimization Algorithm (GOP) for Certain Classes of Nonconvex NLPs-II. Application of Theory and Test Problems,”Computers and Chemical Engineering,14(2), 1419 (1990).

    Article  CAS  Google Scholar 

  • Williams, H. P., “Mathematical Building in Mathematical Programming,” John Wiley, Chichester(1985).

    Google Scholar 

  • Zamora, J. M. and Grossmann, I. E., “A Branch and Contract Algorithm for Problems with Concave Univariate, Bilinear and Linear Fractional Terms” accepted for publication,Journal of Gobal Optimization (1998).

  • Zamora, J. M. and Grossmann, I. E., “Continuous Global Optimization of Structured Process System Models,” accepted for publicationComputers and Chemical Engineering (1998).

MINLP Methods

  • Balas, E., “Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems,”SIAM J. Alg. Disc. Meth.,6, 466 (1985).

    Google Scholar 

  • Beaumont, N., “An Algorithm for Disjunctive Programs,”European Journal of Operations Research,48, 362 (1991).

    Article  Google Scholar 

  • Borchers, B. and Mitchell, J. E., “An Improved Branch and Bound Algorithm for Mixed Integer Nonlinear Programming,”Computers and Operations Research,21, 359 (1994).

    Article  Google Scholar 

  • Ding-Mei and Sargent, R. W H., “A Combined SQP and Branch and Bound Algorithm for MINLP Optimization,” Internal Report, Centre for Process Systems Engineering, London (1992).

  • Duran, M. A. and Grossmann, I. E., “An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs,”Math Programming,36, 307 (1986).

    Article  Google Scholar 

  • Fletcher, R. and Leyffer, S., “Solving Mixed Integer Nonlinear Programs by Outer Approximation,”Math Programming,66, 327 (1994).

    Article  Google Scholar 

  • Friedler, F. K., Varga, J. B., Feher, E. and Fan, L. T., “Combinatorially Accelerated Branch and Bound Method for Solving the MILP Model of Process Network Synthesis,” in Nonconvex Optimization and its Applications (Eds. Floudas, C. A. and Pardalos, P. M.), Kluwer Academic Publishers, Nowell, MA, 609 (1996).

    Google Scholar 

  • Geoffrion, A. M., “Generalized Benders Decomposition,”Journal of Optimization Theory and Applications,10(4), 237 (1972).

    Article  Google Scholar 

  • Grossmann, I. E. and Kravanja, Z., “Mixed-integer Nonlinear Programming : A Survey of Algorithms and Applications,” The IMA Volumes in Mathematics and its Applications, Vol. 93, Large-Scale Optimization with Applications. Part II : Optimal Design and Control (eds, Biegler, Coleman, Conn, Santosa), Springer Verla, 273 (1997).

  • Gupta, O. K. and Ravindran, V., “Branch and Bound Experiments in Convex Nonlinear Integer Programming,”Management Science,31(12), 1533 (1985).

    Google Scholar 

  • Kelley Jr., J. E., “The Cutting-Plane Method for Solving Convex Programs,”Journal of SIAM,8, 703 (1960).

    Google Scholar 

  • Kocis, G. R. and Grossmann, I. E., “Relaxation Strategy for the Structural Optimization of Process Flow Sheets,”Ind. Eng. Chem. Res.,26, 1869 (1987).

    Article  CAS  Google Scholar 

  • Lee, S. and Grossmann, I. E., “Nonlinear Convex Hull Reformulations and Algorithms for Generalized Disjunctive Programming,” submitted for publication (1999).

  • Leyffer, S., “Deterministic Methods for Mixed-Integer Nonlinear Programming,” Ph.D. thesis, Department of Mathematics and Computer Science, University of Dundee, Dundee (1993).

    Google Scholar 

  • Nabar, S. and Schrage, L., “Modeling and Solving Nonlinear Integer Programming Problems” Presented at Annual AIChE Meeting, Chicago (1991).

  • Paules, G. E. and Floudas, C. A., “Apros: Algorithmic Development Methodology for Discrete-continuous Optimization Problems,”Operations Research,37, 902 (1989).

    Article  Google Scholar 

  • Quesada, I. and Grossmann, I. E., “An LP/NLP Based Branch and Bound Algorithm for Convex MINLP Optimization Problems,”Computers and Chemical Engineering,16, 937 (1992).

    Article  CAS  Google Scholar 

  • Raman, R. and Grossmann, I. E., “Relation Between MILP Modelling and Logical Inference for Chemical Process Synthesis,”Computers and Chemical Engineering,15, 73 (1991).

    Article  CAS  Google Scholar 

  • Raman, R. and Grossmann, I. E., “Symbolic Integration of Logic in Mixed Integer Linear Programming Techniques for Process Synthesis,”Computers and Chemical Engineering,17, 909 (1993).

    Article  CAS  Google Scholar 

  • Raman, R. and Grossmann, I. E., “Modelling and Computational Techniques for Logic Based Integer Programming,”Computers and Chemical Engineering,18, 563 (1994).

    Article  CAS  Google Scholar 

  • Stubbs, R. A. and Mehrotra, S., “A Branch and Cut Method for 0-1 Mixed Convex Programming,” Presented at INFORMS Meeting, Washington (1996).

  • Turkay, M. and Grossmann, I. E., “A Logic Based Outer-Approximation Algorithm for MINLP Optimization of Process Flowsheets,”Computers and Chemical Engineering,20, 959 (1996).

    Article  CAS  Google Scholar 

  • Vecchietti, A. and Grossmann, I. E., “LOGMIP: A Discrete Continuous Nonlinear Optimizer”Computers and Chemical Engineering,21, S427 (1997).

    CAS  Google Scholar 

  • Viswanathan, J. and Grossmann, I. E., “A Combined Penalty Function and Outer-Approximation Method for MINLP Optimization,”Comput. Chem. Engng,14, 769 (1990).

    Article  CAS  Google Scholar 

  • Westerlund, T. and Pettersson, F., “A Cutting Plane Method for Solving Convex MINLP Problems,”Computers and Chemical Engineering,19, S131 (1995).

    Article  CAS  Google Scholar 

  • Yuan, X., Zhang, S., Piboleau, L. and Domenech, S., “Une Methode d’optimisation Nonlineare en Variables pour la Conception de Procedes,”Operations Research,22, 331 (1988).

    Google Scholar 

Reactor Networks

  • Achenie, L. E. K and Biegler, L. T., “Algorithmic Synthesis of Chemical Reactor Networks Using Mathematical Programming,”Ind. Eng. Chem. Fund.,25, 621 (1986).

    Article  CAS  Google Scholar 

  • Achenie, L. E. K and Biegler, L. T., “Developing Targets for the Performance Index of a Chemical Reactor Network,”Ind. Eng. Chem. Res.,27, 1811(1988).

    Article  CAS  Google Scholar 

  • Balakrishna, S. and Biegler, L. T., “A Constructive Targeting Approach for the Synthesis of Isothermal Reactor Networks,”Ind. Eng. Chem. Res.,31(9), 300 (1992a).

    Article  CAS  Google Scholar 

  • Balakrishna, S. and Biegler, L. T., “A Unified Approach for the Simultaneous Synthesis of Reaction, Energy and Separation Systems,”Ind. Eng. Chem. Res.,32(7), 1372 (1993).

    Article  CAS  Google Scholar 

  • Balakrishna, S. and Biegler, L. T., “Targeting Strategies for Synthesis and Energy Integration of Non-isothermal Reactor Networks,”Ind. Eng. Chem. Res.,31(9), 2152 (1992b).

    Article  CAS  Google Scholar 

  • Bikic, D. and Glavic, P., “Innovative Designs of Reactor Networks from Reaction and Mixing Principles,”Comput. Chem. Eng.,20, S455 (1996).

    Article  CAS  Google Scholar 

  • Bikic, D. and Glavic, P., “Synthesis of Reactor Networks with Multiple Multicomponent Feeds,”Comput. Chem. Eng.,19, S161 (1995).

    Article  CAS  Google Scholar 

  • Chitra, S. P. and Govind, R., “Synthesis of Optimal Reactor Structures for Homogeneous Reactions,”AIChE J.,31(2), 177 (1985).

    Article  CAS  Google Scholar 

  • Chitra, S. P. and Govind, R., “Yield Optimization for Complex Reactor Systems,”Chem. Eng. Sci.,36, 1219 (1981).

    Article  CAS  Google Scholar 

  • Feinberg, M. and Hildebrandt, D., “Optimal Reactor Design from a Geometric Viewpoint,” Presented at the Annual AIChE Meeting Paper 142c Miami Beach Florida (1992).

  • Feinberg, M. and Hildebrandt, D., “Optimal Reactor Design from a Geometric Viewpoint-I. Universal Properties of the Attainable Region,”Chem. Eng. Sci.,52(10), 1637 (1997).

    Article  CAS  Google Scholar 

  • Glasser, D., Crowe, C. and Hildebrandt, D., “A Geometric Approach to Steady Flow Reactors: The Attainable Region and Optimization in Concentration Space,”Ind. Eng. Chem. Res.,26(9), 1803 (1987).

    Article  CAS  Google Scholar 

  • Hildebrandt, D., Glasser, D. and Crowe, C., “The Geometry of the Attainable Region Generated by Reaction and Mixing with and without Constraints,”Ind. Eng. Chem. Res.,29(1), 49 (1990).

    Article  CAS  Google Scholar 

  • Hopley, F., Glasser, D. and Hildebrandt, D., “Optimal Reactor Structures for Exothermic Reversible Reactions with Complex Kinetics,”Chem. Eng Sci.,51(10), 2399 (1996).

    Article  CAS  Google Scholar 

  • Horn, F., “Attainable Regions in Chemical Reaction Technique. Presented at the Third European Symposium on Chemical Reaction Engineering,” Pergamon, London (1964).

    Google Scholar 

  • Kokossis, A. C. and Fluodas, C. A., “Optimization of Complex Reaction Networks-II. Nonisothermal Operation,”Chem. Eng. Sci.,49(7), 1037 (1994b).

    Article  CAS  Google Scholar 

  • Kokossis, A. C. and Fluodas, C. A., “Optimization of Complex Reactor Networks. I Isothermal Operation,”Chem. Eng. Sci.,45(3), 595 (1990).

    Article  CAS  Google Scholar 

  • Kokossis, A. C. and Fluodas, C. A., “Stability in Optimal Design: Synthesis of Complex Reaction Networks”,AIChE J.,40(5), 849 (1994a).

    Article  CAS  Google Scholar 

  • Kokossis, A. C. and Fluodas, C. A., “Synthesis of Non-isothermal Reactor Networks,” Presented at the Annual AIChE Meeting, San Francisco CA (1991).

  • Kokossis, A. C. and Fluodas, C. A., “Synthesis of Reactor-Separator-Recycle Systems,” Presented at the Annual AIChE Meeting, San Francisco CA (1989).

  • Lakshamanan, A. and Biegler, L. T., “Synthesis of Optimal Chemical Reactor Networks,”Ind. Eng. Chem. Res.,35,1344 (1996a).

    Article  Google Scholar 

  • Lakshamanan, A. and Biegler, L. T., “Synthesis of Optimal Chemical Reactor Networks with Simultaneous Mass Integration,”Ind. Eng. Chem. Res.,35,4523 (1996).

    Article  Google Scholar 

  • Marcoulaki, E. and Kokossis, A. C., “Stochastic Optimization of Complex Reaction Systems,”Compta. Chem. Eng.,20, S231 (1996).

    Article  CAS  Google Scholar 

  • Omtveit, T. and Lien, K., “Reactor System Design Revisited,” Paper No. 153b, AIChE Meeting St Louis, MO (1993).

  • Smith, E. M. B. and Pantelides, C. C., “Design of Reaction/Separation Networks Using Detailed Models,”Comput. Chem. Eng.,19, S83 (1995).

    Article  CAS  Google Scholar 

Distillation

  • Aggarwal, A. and Floudas, C. A., “Synthesis of General Distillation Sequences-Nonsharp Separations,”Comp. Chem. Eng,14(6), 631 (1990).

    Article  CAS  Google Scholar 

  • Agrawal, R., “Synthesis of Distillation Column Configurations for a Multicomponent Separation,”Ind. Eng. Chem. Res.,35, 1059 (1996).

    Article  CAS  Google Scholar 

  • Andrecovic, M. J. and Westerberg, A. W., “A MILP Formulation for Heat Integrated Distillation Sequence Synthesis,”AIChE J.,31(9), 1461 (1985).

    Article  Google Scholar 

  • Bagajewicz, M. J. and Manousiouthakis, V., “Mass/Heat Exchange Network Representation of Distillation Networks,”AIChE J.,38, 1769(1992).

    Article  CAS  Google Scholar 

  • Barbosa, D. and Doherty, M. F., “The Influence of Equilibrium Chemical Reactions on Vapor Liquid Phase Diagrams,”Chem. Eng Sci.,43(3), 529 (1988a).

    Article  CAS  Google Scholar 

  • Barbosa, D. and Doherty, M. F., “The Simple Distillation of Homogeneous Reactive Mixture,”Chem. Eng. Sci.,43(3), 541 (1988b).

    Article  CAS  Google Scholar 

  • Bauer, M. H. and Stichlmair, J., “Design and Economic Optimization of Azeotropic Distillation Processes Using Mixed-Integer Nonlinear Programming,”Comp. Chem. Eng.,22(9), 1271 (1998).

    Article  CAS  Google Scholar 

  • Bauer, M. H. and Stichlmair, J., “Superstructures for the Mixed Integer Optimization of Nonideal and Azeotropic Distillation Processes,”Comp. Chem. Eng Suppl,20, S25 (1996).

    Article  CAS  Google Scholar 

  • Bessling, B., Schembecker, G. and Simmrock, K. H., “Design of Process with Reactive Distillation Line Diagrams,”Ind. Eng. Chem. Res.,36, 3032 (1997).

    Article  CAS  Google Scholar 

  • Caballero, J. A. and Grossmann, I. E., “Aggregated Models for Integrated Distillation Systems,”Ind. Eng. Chem. Res.,38, 2330 (1999).

    Article  CAS  Google Scholar 

  • Ciric, A. R. and Gu, D., “Synthesis of Nonequilibrium Reactive Distillation Processes by MINLP Optimization,”AIChE J.,40(9), 1479 (1994).

    Article  CAS  Google Scholar 

  • Douglas, J. M., “Conceptual Design of Chemical Process,” McGraw-Hill (1988).

  • Dunnebier, G. and Pantelides, C. C., “Optimal Design of Thermally Coupled Distillation Columns,”Ind. Eng. Chem. Res.,38(1), 162 (1999).

    Article  Google Scholar 

  • Floquet, P., Pibouleau, L. and Domenech, S., “Mathematical Programming Tools for Chemical Engineering Process Design Synthesis,”Chem. Eng Process,23, 1 (1988).

    Article  Google Scholar 

  • Floquet, P., Pibouleau, L. and Domenech, S., “Separation Sequence Synthesis: How to Use Simulated Annealing Procedures,”Comp. Chem. Eng,18, 1141, 1 (1994).

    Article  CAS  Google Scholar 

  • Floudas, C. A. and Anastasiades, S. H., “Synthesis of Distillation Sequences with Several Multicomponent Feed and Product Stream,”Chem. Eng Sci.,43(9), 2407 (1988).

    Article  CAS  Google Scholar 

  • Floudas, C. A. and Paules, G. E., “A Mixed-Integer Nonlinear Programming Formulation for the Synthesis of Heat-Integrated Distillation Sequence,”Comp. Chem. Eng.,12(6), 531 (1988).

    Article  CAS  Google Scholar 

  • Floudas, C. A., “Separation Synthesis of Multicomponent Feed Streams into Multicomponent Product Streams,”AIChE J.,33(4), 540(1987).

    Article  CAS  Google Scholar 

  • Fonyo, Z., “Thermodynamic Analysis of Rectification: II. Finite Cascade Models,”Int. Chem. Eng.,14(2), 203 (1974).

    Google Scholar 

  • Fraga, E. S. and Matias, T. R. S., “Synthesis and Optimization of a Non-ideal Distillation Systems Using Parallel Genetic Algorithm,”Suppl Comp. Chem. Eng.,20, S79 (1996).

    Article  CAS  Google Scholar 

  • Fraga, E. S. and McKinnon, K. I. M., “Portable Code for Process Synthesis Using Workstation Clusters and Distributed Memory Multicomputers,”Comp. Chem. Eng,19, 759 (1995).

    Article  CAS  Google Scholar 

  • Gert-Jan, A. F. and Liu, Y. A., “Heuristic Synthesis and Shortcut Design of Separation Processes Using Residue Curve Maps: A Review,”Ind. Eng. Chem. Res.,33, 2505 (1994).

    Article  Google Scholar 

  • Hauan, S. and Lien, K. M., “Phenomena Based Design Approach to Reactive Distillation,”Chem. Eng. Res. Des.,76, 396 (1998).

    Article  CAS  Google Scholar 

  • Hendry, J. E. and Hughes, R. R., “Generating Separation Process Flowsheets,”Chem. Eng. Prog.,68, 69(1972).

    Google Scholar 

  • Johns, W. D. and Romero, D., “Automated Generation and Evaluation of Process Flowsheets,”Comp. Chem. Eng.,3, 251 (1979).

    Article  CAS  Google Scholar 

  • Juergen, K., Poellmann, P. and Blass, E., “A Review on Minimum Energy Calculations for Ideal and Nonideal Distillations,”Ind. Eng. Chem. Res.,34, 1003 (1995).

    Article  Google Scholar 

  • Kakhu, A. I. and Flower, J. R., “Synthesizing Heat-Integrated Distillation Sequences Using Mixed Integer Programming,”Chem. Eng Res. Des.,66(3), 241 (1988).

    CAS  Google Scholar 

  • Laroche, L., Bekiaris, N., Andersen, H. W. and Morari, M., “Homogeneous Azeotropic Distillation: Separability and Flowsheet Synthesis,”Ind. Eng. Chem. Res.,31, 2190 (1992).

    Article  CAS  Google Scholar 

  • Lucia, A. and Kumar, A., “Distillation Optimization,”Comp. Chem. Eng.,12(12), 1263 (1988).

    Article  CAS  Google Scholar 

  • Novak, Z., Kravanja, Z. and Grossmann, I. E., “Simultaneous Synthesis of Distillation Sequences in Overall Process Schemes Using an Improved MINLP Approach,”Comp. Chem. Eng.,20, 1425 (1996).

    Article  CAS  Google Scholar 

  • Okasinski, M. and Doherty, M. F., “Design Method for Kinetically Controlled, Staged Reactive Distillation Columns,”Ind. Eng. Chem. Res.,37, 2821 (1998).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “Generalized Modular Representation Framework for Process Synthesis,”AIChE J.,42, 1010(1996).

    Article  CAS  Google Scholar 

  • Paules, G. E. and Floudas, C. A., “Stochastic Programming in Process Synthesis: A Two Stage Model with MINLP Recourse for Multiperiod Heat-Integrated Distillation Sequences,”Comp. Chem. Eng.,16(3), 189 (1992).

    Article  CAS  Google Scholar 

  • Peltyuk, F. B., Platonov, V. M. and Slavinskii, D. M., “Thermodynamically Optimal Method for Separating Multicomponent Mixtures,”Int. Chem. Eng.,5(3), 555 (1965).

    Google Scholar 

  • Raman, R. and Grossmann, I. E., “Modeling and Computational Techniques for Logic Based Integer Programming,”Comp. Chem. Eng.,18, 563 (1994).

    Article  CAS  Google Scholar 

  • Rooks, R. E., Julka, V., Doherty, M. F. and Malone, M. F., “Structure of Distillation Regions for Multicomponent Azeotropic Mixtures,”AIChE J.,44, 1382(1998).

    Article  CAS  Google Scholar 

  • Sargent, R. W. H., “A Functional Approach to Process Synthesis and its Applications to Distillation Systems,”Comput. Chem. Eng.,22, 31(1998).

    Article  CAS  Google Scholar 

  • Sargent, R. W. H. and Gaminibandara, K., “Introduction: Approaches to Chemical Process Synthesis,” In Optimization in Action (Dixon, L. C. W. ed.), Academic Press, London (1976).

    Google Scholar 

  • Seader, J. D. and Westerberg, A. W., “A Combined Heuristic and Evolutionary Strategy for Synthesis of Simple Separation Sequences,”AIChE J.,23, 951 (1977).

    Article  CAS  Google Scholar 

  • Siirola, J. J. and Rudd, D. F., “Computer-Aided Synthesis of Chemical Process, Designs,”Ind. Eng. Chem. Fundam.,10, 353(1971).

    Article  Google Scholar 

  • Smith, E. M., “On the Optimal Design of Continuos Processes,” PhD. Dissertation Under Supervision of C. Pantelides. Imperial College of Science, Technology and Medicine, London U.K. (1996).

    Google Scholar 

  • Stephanopoulos, G. and Westerberg, A. W., “Studies in Process Synthesis, II. Evolutionary Synthesis of Optimal Process Flowsheets,”Chem. Eng. Sci.,31, 195 (1976).

    Article  CAS  Google Scholar 

  • Turkay, M. and Grossmann, I. E., “Logic-Based MINLP Algorithms for the Optimal Synthesis of Process Networks”Comp. Chem. Eng,20, 959 (1996).

    Article  CAS  Google Scholar 

  • Ung, S. and Doherty, M. F., “Calculation of Residue Curve Maps for Mixtures with Multiple Equilibrium Chemical Reactions,”Ind. Eng. Chem. Res.,34, 3195 (1995a).

    Article  CAS  Google Scholar 

  • Ung, S. and Doherty, M. F., “Synthesis of Reactive Distillation Systems with Multiple Equilibrium Chemical Reactions,”Ind. Eng. Chem. Res.,34, 2555 (1995b).

    Article  CAS  Google Scholar 

  • Venimadhavan, G., Buzad, G., Dohertu, M. F and Malone, M. F., “Effect of Kinetics on Residue Curve Maps for Reactive Distillation,”AIChE J.,40(11), 1814 (1994).

    Article  CAS  Google Scholar 

  • Viswanathan, J. and Grossmann, I. E., “An Alternate MINLP Model for Finding the Number of Trays Required for a Specific Separation Objective,”Comp. Chem. Eng.,17(9), 949 (1993a).

    Article  CAS  Google Scholar 

  • Viswanathan, J. and Grossmann, I. E., “Optimal Feed Locations and Number of Trays for Distillation Columns with Multiple Feeds,”Ind. Eng. Chem. Res.,32, 2942 (1993b).

    Article  CAS  Google Scholar 

  • Westerberg, A. W. and Wahnschafft, O., “Synthesis of Distillation Based Separation Systems. In Advances in Chemical Engineering,” Academic Press,23, 63 (1996).

  • Westerberg, A.W., “The Synthesis of Distillated Based Separation,”Comp. Chem. Eng.,9, 421 (1985).

    Article  CAS  Google Scholar 

  • Yeomans, H. and Grossmann, I. E., “A Systematic Modeling Framework of Superstructure Optimization in Process Synthesis,”Comput. Chem. Eng.,23, 709 (1999a).

    Article  CAS  Google Scholar 

  • Yeomans, H. and Grossmann, I. E., “Nonlinear Disjunctive Programming Models for the Synthesis of Heat Integrated Distillation Sequences,” to appearComp. Chem. Eng. (1999b).

Heat Exchanger Networks

  • Athier, G., Floquet, P., Pibouleau, L. and Domenech, S., “Synthesis of Heat Exchanger Networks by Simulated Annealing and NLP Procedures,”AIChE J.,43, 3007 (1997).

    Article  CAS  Google Scholar 

  • Cerda, J. and Westerberg, A. W., “Synthesizing Heat Exchanger Networks Having Restricted Stream/Stream Matches Using Transportation Problem Formulation,”Chem. Eng. Sci.,38, 1723 (1983).

    Article  CAS  Google Scholar 

  • Ciric, A. R. and Floudas, C. A., “Comprehensive Optimization Model of the Heat Exchanger Network Retrofit Problem,”Heat Recovery Systems & CHP,10, 407 (1990).

    Article  CAS  Google Scholar 

  • Ciric, A. R. and Floudas, C. A., “Heat Exchanger Network Synthesis without Decomposition,”Computers and Chem. Eng,15, 385(1991).

    Article  CAS  Google Scholar 

  • Colberg, R. D. and Morari, M., “Area and Capital Cost Targets for Heat Exchanger Network Synthesis with Constrained Matches and Unequal Heat Transfer Coefficient,”Comp. Chem. Eng,14, 1 (1990).

    Article  CAS  Google Scholar 

  • Daichendt, M. M. and Grossmann, I. E., “A Preliminary Screening-Procedure for MINLP Heat-Exchanger Network Synthesis Using Aggregated Models,”Chemical Engineering Research and Design,72, 357 (1994a).

    CAS  Google Scholar 

  • Duran, M. A. and Grossmann, I. E., “Simultaneous Optimization and Heat Integration of Chemical Processes”AIChE J.,32, 592 (1986a).

    Article  CAS  Google Scholar 

  • Floudas, C. A., Ciric, A. R. and Grossmann, I. E., “Automatic Synthesis of Optimum Heat Exchanger Network Configurations,”AIChE J.,32, 276 (1986).

    Article  CAS  Google Scholar 

  • Galli, M. A. and Cerda, J., “A Customized MILP Approach to the Synthesis of Heat Recovery Networks Reaching Specified Topology Targets,”Ind. Eng. Chem. Res.,37, 2479 (1998).

    Article  CAS  Google Scholar 

  • Gundersen, T., Duvold, S. and Hashemi-Ahmady, A., “An Extended Vertical MILP Model for Heat Exchanger Network Synthesis,”Suppl. Comp. Chem. Eng.,20, S97 (1996).

    Article  CAS  Google Scholar 

  • Gundersen, T. and Grossmann, I. E., “Improved Optimization Strategies for Automated Heat Exchanger Network Synthesis through Physical Insights,”Comp. Chem. Eng.,14, 925 (1990).

    Article  CAS  Google Scholar 

  • Gundersen, T. and Naess, L., “The Synthesis of Cost Optimal Heat Exchanger Networks. An Industrial Review of the State of the Art,”Comp. Chem. Eng.,12, 503 (1988).

    Article  CAS  Google Scholar 

  • Lang, Y D., Biegler, L. T. and Grossmann, I. E., “Simultaneous Optimization and Heat Integration with Process Simulators,”Comp. Chem. Eng.,12, 311 (1988).

    Article  CAS  Google Scholar 

  • Linnhoff, B., “Pinch Analysis-A State of the Art Overview”Trans. Icheme.,71(A), 503 (1993).

    CAS  Google Scholar 

  • Linnhoff, B., Mason, D. R. and Wardol, I., “Understanding Heat Exchanger Networks,”Comp. Chem. Eng.,3, 295 (1979).

    Article  Google Scholar 

  • Linnhoff, B. and Hindmarsh, E., “The Pinch Design Method of Heat Exchanger Networks,”Chem. Eng. Sci.,38, 745 (1983).

    Article  CAS  Google Scholar 

  • Nielsen, J. S., Hansen, M. W. and Joergensen, S., “Heat Exchanger Network Modelling Framework for Optimal Design and Retrofitting, Suppl.,”Comp. Chem. Eng.,20, S249 (1996).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “A Multiperiod MINLP Model for the Synthesis of Heat and Mass Exchange Networks,”Comp. Chem. Eng.,18(12), 1125 (1994).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “Synthesis and Retrofit Design of Operable Heat Exchanger Networks. 1. Flexibility and Structural Controllability Aspects,”Comp. Chem. Eng.,33, 1718(1994).

    CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “Synthesis and Retrofit Design of Operable Heat Exchanger Networks. 2. Dynamics and Control Structure Considerations,”Comp. Chem. Eng.,33, 1738(1994).

    CAS  Google Scholar 

  • Papoulias, S. A. and Grossmann, I. E., “A Structural Optimization Approach in Process Synthesis. Part II: Heat Recovery Networks,”Computers and Chemical Engineering,7, 707 (1983).

    Article  CAS  Google Scholar 

  • Quesada, I. and Grossmann, I. E., “Global Optimization Algorithm for Heat Exchanger Networks,”Ind. Eng. Chem. Res.,32, 487 (1993).

    Article  CAS  Google Scholar 

  • Yee, T. F. and Grossmann, I. E., “Simultaneous Optimization Models for Heat Integration, II: Heat Exchanger Network Synthesis,”Comput. chem. Engng,14, 1165 (1990).

    Article  CAS  Google Scholar 

  • Yee, T. and Grossmann, I. E., “A Screening and Optimization Approach for the Optimal Retrofit of Heat Exchanger Networks,”Ind. Eng. Chem. Res.,30,146 (1991).

    Article  CAS  Google Scholar 

  • Yee, T. F., Grossmann, I. E. and Kravanja, Z., “Simultaneous Optimization Models for Heat Integration. III. Optimization of Process Flowsheets and Heat Exchanger Networks,”Computers and Chemical Engineering,14, 1185 (1990).

    Article  CAS  Google Scholar 

  • Zamora, J. M. and Grossmann, I. E., “A Comprehensive Global Optimization Approach for the Synthesis of Heat Exchanger Networks with No Stream Splits,”Computers and Chemical Engineering,21, S65 (1997).

    CAS  Google Scholar 

  • Zamora, J. and Grossmann, I. E., “A Global MINLP Optimization Algorithm for the Synthesis of Heat Exchanger Networks with No Stream Splits,”Computers and Chemical Engineering,22, 367 (1998).

    Article  CAS  Google Scholar 

  • Zhu, X. X., O’Neill, B. K., Roach, J. R. and Wood, R. M., “A New Method for the Synthesis of Heat Exchanger Networks Using Area-targeting Approaches,”Comp. Chem Eng.,19, 197(1995).

    Article  CAS  Google Scholar 

  • Zhu, X. X., “Automated Design Method for Heat Exchanger Network Using Block Decomposition and Heuristic Rules,”Comp. Chem. Eng,21,1095 (1997).

    Article  CAS  Google Scholar 

Mass Exchange Networks

  • Alva-Argaez, A. A., Kokossis, C. and Smith, R., “Wastewater Minimization of Industrial Systems Using an Integrated Approach,”Comput. Chem. Eng.,22, S5741 (1998).

    Google Scholar 

  • Bagajewicz M. J. and Manousiouthakis, V., “Mass/Heat-Exchange Network Representation of Distillation Networks,”AIChE J.,38(11), 1769(1992).

    Article  CAS  Google Scholar 

  • Chang, C. and Hwang, J., “A Multiobjective Programming Approach to Waste Minimization in the Utility Systems of Chemical Processes,”

  • Dantus, M. M. and High, K. A., “Economic Evaluation for the Retrofit of Chemical Processes through Waste Minimization and Process Integration,”Ind. Eng. Chem. Res.,35, 4566 (1996).

    Article  CAS  Google Scholar 

  • Dunn, R. F., Zhu, M., Srinivas, B. K. and El-Halwagi, M. M., “Optimal Design of Energy Induced Separation Networks for VOC Recovery,”AIChE Symp. Sen,90(303), 74 (1995).

    Google Scholar 

  • Dye, S. R., Berry, D. A. and Ng, K. M., “Synthesis of Crystallization-Based Separation Schemes,”AIChE Symp. Ser.,91 (304), 238 (1995).

    Google Scholar 

  • El-Halwagi, M. M. and Manousiouthakis, V., “Automatic Synthesis of Mass Exchange Networks with Simple Component Targets,”Chem. Eng Sci.,45(9), 2813 (1990a).

    Article  CAS  Google Scholar 

  • El-Halwagi, M. M. and Manousiouthakis, V., “Design and Analysis of Mass Exchange Networks with Multicomponent Targets,” Paper 137f. AIChE Meeting San Francisco (1989b).

  • El-Halwagi, M. M. and Manousiouthakis, V., “Simultaneous Synthesis of Mass-Exchange and Regeneration Networks,”AIChE J.,36(8), 1209 (1990b).

    Article  CAS  Google Scholar 

  • El-Halwagi, M. M. and Manousiouthakis, V., “Synthesis of Mass Exchange Networks,”AIChE J.,35(8), 1233 (1989a).

    Article  CAS  Google Scholar 

  • El-Halwagi, M. M., Srinivas, B. K. and Dunn, R. F., “Synthesis of Optimal Heat Induced Separation Networks,”Chem. Eng. Sci.,50, 81(1995).

    Article  CAS  Google Scholar 

  • El-Halwagi, M. M., Hamad, A. A. and Garrison, G. W., “Synthesis of Waste Interception and Allocation Networks,”AIChE J.,42(11), 3087 (1996).

    Article  CAS  Google Scholar 

  • El-Halwagi, M. M., “Pollution Prevention through Process Integration,” Academic Press, San Diego CA (1997).

    Google Scholar 

  • El-Halwagi, M. M. and Srinivas, B. K., “Synthesis of Reactive Mass Exchange Networks,”Chem. Eng. Sci.,47(8), 2113 (1992).

    Article  CAS  Google Scholar 

  • El-Halwagi, M. M., “Synthesis of Optimal Reverse-Osmosis Networks for Waste Reduction,”AIChE J.,38(8), 1185 (1992).

    Article  CAS  Google Scholar 

  • El-Halwagi, M. M., El-Halwagi, A. M. and Manousiouthakis, V., “Optimal Design of Dephenolization Networks for Petroleum-Refinery Wastes,”Trans. Inst. Chem. Eng.,70, Part B, 131(1992).

    CAS  Google Scholar 

  • Galan, B. and Grossmann, I. E., “Optimal Design of Distributed Wastewater Treatment Networks,”Ind. Eng. Chem. Res.,37 (10), 4036 (1998).

    Article  CAS  Google Scholar 

  • Garrison, G. W, Cooley, B. L. and El-Halwagi, M. M., “Synthesis of Mass Exchange Networks with Multiple Target Mass Separating Agents,”Dev. Chem. Eng. Min. Proc.,3(1), 31 (1995).

    Google Scholar 

  • Gupta, A. and Manousiouthakis, V., “Minimum Utility Cost of Mass Exchange Networks with Single Component Variable Supplies and Targets,”Ind. Eng. Chem. Res.,32(7), 1937 (1993).

    Article  CAS  Google Scholar 

  • Gupta, A. and Manousiouthakis, V., “Variable Target Mass-Exchange Network Synthesis Through Linear Programming,”AIChE J.,42(2), 1326 (1996).

    Article  CAS  Google Scholar 

  • Gupta, A. and Manousiouthakis, V., “Waste Reduction Through Multicomponent Mass Exchange Network Synthesis,”Comput. Chem. Eng.,18, S585 (1994).

    Article  Google Scholar 

  • Huang, Y L. and Edgar, T. F., “Knowledge Based Design Approach for the Simultaneous Minimization of Waste Generation and Energy Consumption in a Petroleum Refinery. Waste Minimization Through Process Design,” Rossiter, A. P. ed., McGraw-Hill, New York, 181 (1995).

    Google Scholar 

  • Huang, Y L. and Fan, L. T., “Intelligent Process Design and Control In-Plant Waste Minimization. Waste Minimization Through Process Design,” Rossiter, A. P. ed., McGraw-Hill, New York, 165 (1995).

    Google Scholar 

  • Kuo, W C. J. and Smith, R., “Effluent Treatment System Design,”Chem. Eng Sci.,52(23), 4273 (1997).

    Article  CAS  Google Scholar 

  • Lakshmanan, A. and Biegler, L. T., “Reactor Network Targeting for Waste Minimization,”AIChE Symp. Ser,90(303), 128 (1995).

    Google Scholar 

  • Lee, S. and Park, S., “Synthesis of Mass Exchange Network Using Process Graph Theory,”Comput. Chem. Eng.,20, S201 (1996).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “A Multiperiod MINLP Model for the Synthesis of Heat and Mass Exchange Networks,”Comp. Chem. Eng.,18(12), 1125 (1994).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “A Process Synthesis Modeling Framework Based on Mass/Heat Transfer Module Hyperstructure,”Comp. Chem. Eng.,19, S71 (1995).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “Generalized Modular Representation Framework for Process Synthesis,”AIChE J.,42(4), 1010(1996).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P., Pistikopoulos, E. N. and Floudas, C. A., “Mass Exchange Networks for Waste Minimization: A Simultaneous Approach,”Trans. Inst. Chem. Eng.,72, Part A, 279 (1994).

    CAS  Google Scholar 

  • Richburg, A. and El-Halwagi, M. M., “A Graphical Approach to the Optimal Design of Heat-Induced Separation Networks for VOC Recovery,”AIChE Symp Sen,91(304), 256 (1995).

    Google Scholar 

  • Srinivas, B. K. and El-Halwagi, M. M., “Optimal Design of Pervaporation Systems for Waste Reduction,”Comp. Chem. Eng.,17(10), 957 (1993).

    Article  CAS  Google Scholar 

  • Srinivas, B. K. and El-Halwagi, M. M., “Synthesis of Combined Heat Reactive Mass Exchange Networks,”Chem. Eng. Sci.,49(13), 2059 (1994b).

    Article  CAS  Google Scholar 

  • Srinivas, B. K. and El-Halwagi, M. M., “Synthesis of Reactive Mass Exchange Networks with General Nonlinear Equilibrium Functions,”AIChE J.,49(3), 463 (1994a).

    Article  Google Scholar 

  • Wang, Y. P. and Smith, R., “Design of Distributed Effluent Treatment Systems”Chem. Eng Sci.,49(18), 3127 (1994).

    Article  CAS  Google Scholar 

  • Wang, Y. P. and Smith, R., “Wastewater Minimization with Flowrate Constraints,”Trans. Inst. Chem. Eng.,73, Part A, 889 (1995).

    CAS  Google Scholar 

  • Wang, Y P. and Smith, R., “Wastewater Minimization,”Chem. Eng Sci.,49(7), 981 (1994a).

    Article  CAS  Google Scholar 

  • Wilson, S. and Manousiothakis, V., “Minimum Utility Cost for a Multicomponent Mass Exchange Operation,”Chem. Eng. Sci,53(22), 3887 (1998).

    Article  CAS  Google Scholar 

  • Zhu, M. and El-Halwagi, M. M., “Synthesis of Flexible Mass Exchange Networks,”Chem. Eng. Commun.,138,193 (1995).

    Article  CAS  Google Scholar 

  • Zhu, M. and El-Halwagi, M. M., “Synthesis of Flexible Separation Networks for Waste Management,” AIChE Meeting, San Francisco (1994).

Utility Systems

  • Bruno, J. C., Fernandez, F., Castells, F. and Grossmann, I. E., “A Rigorous MINL Model for the Optimal Synthesis and Operation of Utility Plants,”Trans IChemE,76A, 246 (1998).

    Article  Google Scholar 

  • Chang, C. T. and Hwang, J. R., “A Multiobjetive Programming Approach to Waste Minimization in the Utility Systems of Chemical Processes,”Chem. Eng. Sci.,51, 3951 (1996).

    Article  CAS  Google Scholar 

  • Colmenares, T. R. and Seider, W. D., “Synthesis of Utility Systems Integrated with Chemical Processes,”Ind. Chem. Eng. Res.,28, 84 (1989).

    Article  CAS  Google Scholar 

  • Diaz, M. S. and Bandoni, J. A., “A Mixed Integer Optimization Strategy for a Large Scale Chemical Plant in Operation,”Cornput. Chem. Eng,20, 531 (1996).

    Article  CAS  Google Scholar 

  • Hui, C. W. and Natori, Y., “An Industrial Application Using Mixed-Integer Programming Technique: A Multirperiod Utility System Model,”Comput. Chem. Eng,20, sl577 (1996).

    Article  Google Scholar 

  • Iyer, R. R. and Grossmann, I. E., “Optimal Multi-period Operational Planning for Utility Systems,”Comput. Chem. Eng.,21, 787 (1997).

    Article  CAS  Google Scholar 

  • Kaliventzeff, B., “Mixed-Integer Non Linear Programming and its Applications to the Management of Utility Networks,”Eng Opt.,18, 183(1991).

    Article  Google Scholar 

  • Maia, L O. A. and Qassim, R. Y., “Synthesis of Utility Systems with Variable Demands Using Simulated Annealing,”Comput. Chem. Eng,21(9), 947 (1997).

    Article  CAS  Google Scholar 

  • Maia, L. O. A., Vidal de Carvalho, L. A. and Qassim, R. Y., “Synthesis of Utility Systems by Simulated Annealing,”Comput. Chem. Eng,19(4), 481 (1995).

    Article  CAS  Google Scholar 

  • Marechal, F. and Kaliventzeff, B., “Effect Modeling and Optimization, a New Methodology for Combining Energy and Environment Synthesis of Industrial Processes,”Applied Thermal Engineering,17(8-10), 981(1997b).

    Article  CAS  Google Scholar 

  • Marechal, F. and Kaliventzeff, B., “Heat a Power Integration a MILP Approach for Optimal Integration of Utility Systems,” Proc. 22nd Symp. European Working Party of Use of Computers in Chemical Engineering,” COPE’91, Barcelona (1991).

  • Marechal, F. and Kaliventzeff, B., “Identify the Optimal Pressure Levels in Steam Networks Using Integrated Combined Heat and Power Method,”Chem. Eng. Sci.,52(17), 981 (1997a).

    Google Scholar 

  • Marechal, F. and Kaliventzeff, B., “Process Integration: Selection of the Optimal Utility System,”Comput. Chem. Eng.,22, sl49 (1998).

    Article  Google Scholar 

  • Marechal, F. and Kaliventzeff, B., “Targeting the Minimum Cost of Energy Requirements : a New Graphical Technique for Evaluating the Integration of Utility Systems,”Comput. Chem. Eng, s225 (1996).

  • Mavromatis, S. P. and Kokossis, A. C., “Conceptual Optimization of Utility Networks for Operational Variations. I: Targets and Level Optimization,”Chem. Eng Sci.,53(8), 1585 (1998a).

    Article  CAS  Google Scholar 

  • Mavromatis, S. P. and Kokossis, A. C., “Conceptual Optimization of Utility Networks for Operational Variations. II: Network Development and Optimization,”Chem. Eng. Sci.,53(8), 1609 (1998b).

    Article  CAS  Google Scholar 

  • Papoulias, S. A. and Grossmann, I. E., “A Structural Optimization Approach in Process Synthesis. I: Utility Systems,”Comput. Chem. Eng.,7, 695 (1983).

    Article  CAS  Google Scholar 

  • Petroulas, T. and Reklaitis, G. V., “Computer Aided Synthesis and Design of Plant Utility Systems,”AIChE J.,30, 69 (1984).

    Article  CAS  Google Scholar 

  • Wilkendorf, F., Espuña, A. and Puigjaner, L., “Minimization of the Annual Cost for Complete Utility Systems,”Trans IChemE,76A, 239 (1998).

    Article  Google Scholar 

Process Flowsheets

  • Bandoni, J. A. and Diaz, M. S., “A Mixed Integer Optimization Strategy for a Large Scale Chemical Plant in Operation,”Comp. Chem. Eng,20, 531 (1996).

    Article  Google Scholar 

  • Bandoni, J. A., Diaz, M. S. and Brignole, E. A., “Automatic Design and Optimization of Natural Gas Plants,”Ind. Eng. Chem. Res.,36, 2715 (1997).

    Article  Google Scholar 

  • Bieczczad, J., Koulouris, A., Geurts, K. and Stephanopoulos, G., “Model. LA. A Phenomena-Based Modeling Language for Process Systems Engineering,” presented in 1998 AIChE Annual Meeting, Miami, FL.

  • Daichendt, M. M. and Grossmann, I. E., “Preliminary Screening for the MINLP Synthesis of Process Systems I: Aggregation and Decomposition Techniques,”Comput. Chem. Engng,18, 663 (1994b).

    Article  CAS  Google Scholar 

  • Daichendt, M. M. and Grossmann, I. E., “Integration of Hierarchical Decomposition and Mathematical Programming for the Synthesis of Process Flowsheets,”Computers and Chemical Engineering,22, 147 (1998).

    Article  CAS  Google Scholar 

  • Diwekar, U. M., Grossmann, I. E. and Rubin, E. S., “MINLP Process Synthesizer for a Sequential Modular Simulator”Industrial & Engineering Chemistry Research,31, 313 (1992a).

    Article  CAS  Google Scholar 

  • Diwekar, U. M., Frey, C. M. and Rubin, E. S., “Synthesizing Optimal Flowsheets. Application to IGCC System Environmental Control,”Industrial & Engineering Chemistry Research,31, 1927 (1992b).

    Article  CAS  Google Scholar 

  • Douglas, J. M., “A Hierarchical Decision Procedure for Process Synthesis,”AIChE J.,31, 353 (1985).

    Article  CAS  Google Scholar 

  • Douglas, J. M., “Conceptual Design of Chemical Process,” McGraw-Hill (1988).

  • Douglas, J. M., “Synthesis of Multistep Reaction Processes,” In Foundations of Computer-Aided Design, Cache-Elsevier, Amsterdam (1990).

    Google Scholar 

  • Duran, M.A. and Grossmann, I. E., “Simultaneous Optimization and Heat Integration of Chemical Processes,”AIChE J.,32, 123 (1986).

    Article  CAS  Google Scholar 

  • Duran, M. A. and Grossmann, I. E., “A Mixed-integer Nonlinear Programming Algorithm for Process Systems Synthesis,”AIChE J.,32, 592 (1986b).

    Article  CAS  Google Scholar 

  • Fonyo, Z. and Mizsey, P., “A Global Approach to the Synthesis and Preliminary Design of Integrated Total Flowsheets,” AIChE Annual Meeting, Chicago (1990).

  • Fraga, E. S., “The Automated Synthesis of Complex Reaction/ Separation Processes Using Dynamic Programming,”Trans. Inst. Chem. Eng,74A, 249 (1996).

    Google Scholar 

  • Friedler, F., Tarjan, K., Huang, Y. W. and Fan, L. T., “Graph-theoretic Approach to Process Synthesis: Polynomial Algorithm for Maximal Structure Generation,”Comp. Chem. Eng.,17, 929 (1993).

    Article  CAS  Google Scholar 

  • Friedler, F., Kovacs, Z. and Fan, L. T., “Parametric Study of Separation Network Synthesis: Extreme Properties of Optimal Structures,”Suppl. Comp. Chem. Eng,19, 107 (1995).

    Article  Google Scholar 

  • Friedler, F., Verga, J. B. and Fan, L. T., “Algorithmic Approach to the Integration of Total Flowsheet Synthesis and Wase Minimization,”Chem. Eng Sci.,50, 1218 (1995).

    Google Scholar 

  • Gani, R., Hytoft, G., Jaksland, C. and Jensen A. K., “An Integrated Computer Aided System for Integrated Design of Chemical Processes,”Comp. Chem. Eng,21, 1135 (1997).

    Article  CAS  Google Scholar 

  • Grossmann, I. E., “Mixed-Integer Programming Approach for the Synthesis of Integrated Process Flowsheets”Comp. Chem. Eng.,9,463(1985).

    Article  CAS  Google Scholar 

  • Grossmann, I. E., “MINLP Optimization Strategies and Algorithms for Process Synthesis,” In Foundations of Computer-Aided Design, Cache-Elsevier, Amsterdam (1990a).

    Google Scholar 

  • Grossmann, I. E., “Mixed-integer Nonlinear Programming Techniques for the Synthesis of Engineering Systems,”Res. Eng. Des.,1, 205 (1990b).

    Article  Google Scholar 

  • Grossmann, I. E., “Mixed-Integer Optimization Techniques for Algorithmic Process Synthesis,”Advances in Chemical Engineering,23,Process Synthesis, 171 (1996).

    Article  CAS  Google Scholar 

  • Grossmann, I. E. and Daichendt, M. M., “New Trends in Optimization-based Approaches for Process Synthesis,”Computers and Chemical Engineering,20, 665 (1996).

    Article  CAS  Google Scholar 

  • Grossmann, I. E., Yeomans, H. and Kravanja, Z., “A Rigorous Disjunctive Optimization Model for Simultaneous Flowsheet Optimization and Heat Integration,”Computers and Chemical Engineering,22, S157 (1998).

    Article  CAS  Google Scholar 

  • Harsh, M. G., Saderne, P. and Biegler, L. T., “Mixed Integer Flowsheet Optimization Strategy for Process Retrofits. The Debottlenecking Problem,”Computers and Chemical Engineering,13, 947 (1989).

    Article  CAS  Google Scholar 

  • Johns, W. D. and Romero, D., “Automated Generation and Evaluation of Process Flowsheets,”Comp. Chem. Eng.,3, 251 (1979).

    Article  CAS  Google Scholar 

  • Kirkwood, R. L., Locke, M. H. and Douglas, J. M., “A Prototype Expert System for Synthesizing Chemical Process Flowsheets,”Comp. Chem. Eng,12, 329 (1988).

    Article  CAS  Google Scholar 

  • Kocis, G. R. and Grossmann, I. E., “Relaxation Strategy for the Structural Optimization of Process Flow Sheets,”Ind. Eng. Chem. Res.,26, 1869 (1987).

    Article  CAS  Google Scholar 

  • Kocis, G. R. and Grossmann, I. E., “A Modeling and Decomposition Strategy for the MINLP Optimization of Process Flowsheets,”Comput. Chem. Engng.,13, 797 (1989).

    Article  CAS  Google Scholar 

  • Kravanja, Z. and Grossmann, I. E., “PROSYN, An MINLP Process Synthesizer,”Comput. Chem. Engng.,14, 1363 (1990).

    Article  Google Scholar 

  • Kravanja, Z. and Grossmann, I. E., “PROSYN-An Automated Topology and Parameter Process Synthesizer”Computers and Chemical Engineering,17, S87 (1993).

    Article  CAS  Google Scholar 

  • Kravanja, Z. and Grossmann, I. E., “New Developments and Capabilities in PROSYN-An Automated Topology and Parameter Process Synthesizer”Computers Chem. Engng,18, 1097 (1994).

    Article  CAS  Google Scholar 

  • Kravanja, Z. and Grossmann, I. E., “A Computational Approach for the Modelling/Decomposition Strategy in the MINLP Optimization of Process Flowsheets with Implicit Models,”Ind. Eng. Chem. Research,35, 2065 (1996).

    Article  CAS  Google Scholar 

  • Kravanja, Z. and Grossmann, I. E., “Multilevel-hierarchical MINLP Synthesis of Process Flowsheets,”Computers and Chemical Engineering 21, S421 (1997).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “A Process Synthesis Modeling Framework Based on Mass/Heat Transfer Module Hyperstructure,”Comp. Chem. Eng.,19, S71 (1995).

    Article  CAS  Google Scholar 

  • Papalexandri, K. P. and Pistikopoulos, E. N., “Generalized Modular Representation Framework of Process Synthesis,”AIChE J.,42, 1010(1996).

    Article  CAS  Google Scholar 

  • Reneaume, J. M., Joulia, X. and Koehret, B., “Development of a Process Synthesizer in a Modular Environment,”Suppl. Comp. Chem. Eng,19, S33 (1995).

    Article  CAS  Google Scholar 

  • Rippin, D. W. T., “Introduction: Approaches to Chemical Process Synthesis,” in Foundations of Computer-Aided Design, Siirola, J. J., Grossmann, I. E. and Stephanopoulos, G. (eds.) Cache-Elsevier, Amsterdam (1990).

    Google Scholar 

  • Schembecker, G., Simmrock, K. H. and Wolff, A., “Synthesis of Chemical Process Flowsheets by Means of Cooperating Knowledge Integrating Systems,” Institution of Chemical Engineers Symposium Series,” 133 (1994).

  • Siirola, J. J. and Rudd, D. F., “Computer-Aided Synthesis of Chemical Process Designs,”Ind. Eng. Chem. Fundam.,10, 353 (1971).

    Article  Google Scholar 

  • Smith, E. M., “On the Optimal Design of Continuos Processes” PhD. Dissertation. Imperial College of Science, Technology and Medicine, London U.K. (1996).

    Google Scholar 

  • Smith, E. M. B. and Pantelides, C. C., “Design of Reaction/Separation Networks using Detailed Models,”Suppl. Comp. Chem. Eng.,19, S83(1995).

    Article  CAS  Google Scholar 

  • Stephanopoulos, G. and Westerberg, A. W., “Studies in Process Synthesis. II. Evolutionary Synthesis of Optimal Process Flowsheets,”Chem. Eng Sci.,31, 195 (1976).

    Article  CAS  Google Scholar 

  • Turkay, M. and Grossmann, I. E., “Logic-Based MINLP Algorithms for the Optimal Synthesis of Process Networks,”Comp. Chem. Eng.,20, 959 (1996a).

    Article  CAS  Google Scholar 

  • Turkay, M. and Grossmann, I. E., “Disjunctive Optimization Techniques for the Optimization of Process Systems with Discontinuous Investment Costs. Multiple Size Regions,”Ind. Eng. Chem. Res.,35, 2611 (1996b).

    Article  CAS  Google Scholar 

  • Turkay, M. and Grossmann, I. E., “Structural Flowsheet Optimization with Complex Investment Cost Functions, ”Computers and Chemical Engineering,22, 673 (1998).

    Article  CAS  Google Scholar 

  • Yeomans, H. and Grossmann, I. E., “A Systematic Modeling Framework of Superstructure Optimization in Process Synthesis,” accepted for publication (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio E. Grossmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossmann, I.E., Caballero, J.A. & Yeomans, H. Mathematical programming approaches to the synthesis of chemical process systems. Korean J. Chem. Eng. 16, 407–426 (1999). https://doi.org/10.1007/BF02698263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698263

Key words

Navigation