Skip to main content
Log in

Steady-state performance of a continuous biofilm fermentor system for penicillin production

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Steady-state performance of a three-phase fluidized-bed biofilm fermentor system, which is used for production of penicillin, is analyzed by considering two ideal contacting patterns, i.e., complete-mixed and plug-flow ones. At steady state, the biofilm thickness is kept constant by assuming that the microbial growth is balanced with cell decay processes. From the simulation analyses, it was found that a complete-mixed contacting pattern gives superior performance to plug-flow one in both outlet product concentration and specific productivity of the reactor system. The inhibitory effect of the carbon source, glucose, is found to be less pronounced in the former configuration, and this fact is considered an important criterion for the design purposes. Optimum biofilm thickness for the biofilm fermentor system was found to be a function of various operating parameters such as inlet substrate concentration and oxygen transfer capacity of the system. It should therefore not be determined directly from the penetration depth of a limiting nutrient, but from information on the interactions between reactor productivity and those operating variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kornegay, B.H., Andrews, J.F.: J. Water Poll. Control Fed.,40 (11), part 2, R460 (1968).

    CAS  Google Scholar 

  2. Jerris, J.S., Owens, R.W., Hickey, R.: J. Water Poll. Control. Fed.,49, 816 (1977).

    Google Scholar 

  3. Atkinson, B.: Biochemical Reactors, Pion Press, London (1974).

    Google Scholar 

  4. Atkinson, B., Fowler, H.W.: Adv. Biochem. Eng. (T.K. Ghose, A. Fichter and N. Blakebrough, eds.), Springer-Verlag, New York, Vol.3, 221 (1974).

    Google Scholar 

  5. Atkinson, B., Knights, A.J.: Biotechnol. Bioeng.,17, 1245 (1975).

    Article  Google Scholar 

  6. Brifaud, J., Engasser, J.-M.: Biotechnol. Bioeng.,21, 2093 (1979).

    Article  Google Scholar 

  7. Constantinides, A., Spencer, J.L., Gaden, E.L. Jr.: Biotechnol. Bioeng.,12, 803 (1970).

    Article  CAS  Google Scholar 

  8. Calam, C.T., Ismail, B. A-K.: J. Chem. Tech. Biotechnol.,30, 249 (1980).

    CAS  Google Scholar 

  9. Heijnen, I.J., Roels, J.A., Stauthamer, A.H.: Biotechnol. Bioeng.,21, 2175 (1979).

    Article  CAS  Google Scholar 

  10. Fisherman, V.M., Biryukov, V.V.: Biotechnol. Bioeng. Symp., No. 4, 647 (1974).

  11. Bajpai, R.K., Reuss, M.: J. Chem. Tech. Biotechnol.,30, 332 (1980).

    CAS  Google Scholar 

  12. Ryu, D.Y., Humphrey, A.E.: J. Ferment. Technol.,50 (6), 424 (1972).

    Google Scholar 

  13. Giona, A.R., Marrelli, L., Toro, L.: Biotechnol. Bioeng.,18, 1249 (1976).

    Article  Google Scholar 

  14. Bajpai, R.K., Reuss, M.: Biotechnol. Bioeng.,23, 717(1981).

    Article  CAS  Google Scholar 

  15. Merchuk, J.C., Stein, Y., Mateles, R.I.: Biotechnol. Bioeng.,22, 1189(1980).

    Article  Google Scholar 

  16. Rittmann, B.E.: Biotechnol. Bioeng.,24, 1341 (1982).

    Article  CAS  Google Scholar 

  17. Andrews, G.F.: Biotechnol. Bioeng.,24, 2013 (1982).

    Article  CAS  Google Scholar 

  18. Van Suijdam, J.C., Hols, H., Kossen, N.W.F.: Biotechnol. Bioeng.,24, 177 (1982).

    Article  Google Scholar 

  19. Froment, G.F., Bischoff, K.B.: Chemical Reactor Analysis and Design, John Wiley & Sons, New York (1979).

    Google Scholar 

  20. Alvarez-Guenka, M., Nerengerg, M.A.: Can. J. Chem. Eng.,59, 739 (1981).

    Article  Google Scholar 

  21. Deckwer, W.D., Nguen-Tien, K., Schumpe, A., Serpemen, Y.: Biotechnol. Bioeng.,24, 461 (1982).

    Article  CAS  Google Scholar 

  22. Park, Y.H., Davis, M.E., Wallis, D.A.: Biotechnol. Bioeng. accepted for publication (1984).

  23. Ascher, U., Christiansen, J., Russells, R.D.: ACM Trans, math. Softw.,7, 209 (1981).

    Article  Google Scholar 

  24. De Boor, C.: J. Approx. Theory,6 (1), 50 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.H., Wallis, D.A. Steady-state performance of a continuous biofilm fermentor system for penicillin production. Korean J. Chem. Eng. 1, 119–128 (1984). https://doi.org/10.1007/BF02697442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697442

Keywords

Navigation