Skip to main content
Log in

The influence of interparticle spacing on cyclic deformation and fatigue crack propagation in an aluminum-4 Pct copper alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A high purity Al-4 pct Cu alloy has been overaged for two different times at 400°C giving interparticle spacings (λ) of about 0.53 and 1.37 μm. Cyclic plasticity of the alloy with the smaller interparticle spacing can be explained in terms of plastic deformation behavior controlled by the structure whereas that for the alloy with the larger interparticle spacing is controlled by the matrix. The fatigue lives of the weaker alloy (λ = 1.37 μm) may be accurately predicted using the models of Coffin-Manson and Tomkins, however, these models are not applicable to the stronger alloy (λ = 0.53 μm). It was found that the crack tip opening displacement at the threshold stress intensity range (ΔKth) was equivalent to the interparticle spacing. ΔKth is related to the cyclic yield stress, σcy and the interparticle spacing in the following manner: ΔKth ≈ (2 Eλσcy)1/2, whereE is the modulus of elasticity. In the present case, the term λσcy is constant, giving the impression that ΔKth is independent of the mechanical properties and microstructure. At very low growth rates, however, the fatigue crack growth is independent of these parameters and also the method of cyclic deformation. A transition to higher crack growth rates occurs when the plastic zone size reaches approximately one-seventh of the specimen thickness, allowing a nonplanar crack front to be developed. The value of the stress intensity range (ΔKT) at this transition was found to be dependent upon the interparticle spacing according to the relation: ΔKTλ = 9.6 Pa-m3/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Masing:Proc. 2nd lnt. Conference of Applied Mechanics, pp. 332–35, Zurich, 1926.

  2. G. R. Halford and JoDean Morrow:Proc. ASTM, 1962, vol. 62, pp. 695–707.

    Google Scholar 

  3. L. F. Coffin:Trans. ASME, 1954, vol. 76, pp. 923–49; S. S. Manson: Exp. Mech, 1965, vol. 5, p. 193.

    CAS  Google Scholar 

  4. T. Endo and JoDean Morrow:J. Mater., 1969, vol. 4, pp. 159–75.

    Google Scholar 

  5. N. S. Stoloff and D. J. Duquette:CRC Critical Review in Solid State Sciences, vol. 4, pp. 615–87, 1974.

    Article  CAS  Google Scholar 

  6. M. F. Ashby:Phil Mag., 1969, vol. 14, p. 399.

    Google Scholar 

  7. K. C. Russell and M. F. Ashby:Acta Met., 1970, vol. 18, p. 891.

    Article  CAS  Google Scholar 

  8. C. Calabrese and C. Laird:Mater. Sci. Eng., 1974, vol. 13, p. 141.

    Article  CAS  Google Scholar 

  9. C. E. Feltner and C. Laird:Acta Met, 1967, vol. 15, p. 1633.

    Article  CAS  Google Scholar 

  10. H. Abdel-Raouf and A. Plumtree:Met. Trans., 1971, vol. 2, pp. 1863–67.

    Article  CAS  Google Scholar 

  11. P. Paris and C. Sih: ASTM, STP 381, pp. 30–83, 1965.

  12. H. Abdel-Raouf, P. P. Benham, and A. Plumtree:Can. Met. Quart, 1970, vol. 10, pp. 87–95.

    Google Scholar 

  13. G. R. Halford: Ph.D. Thesis, University of Illinois, 1966.

  14. C. Calabrese and C. Laird:Met. Trans., 1974, vol. 5, p. 1785.

    Article  CAS  Google Scholar 

  15. B. Tomkins:Phil Mag., 1968, vol. 13, pp. 1041–66.

    Article  Google Scholar 

  16. P. E. Irving and C. J. Beevers:Met. Trans., 1974, vol. 5, p. 391.

    Article  CAS  Google Scholar 

  17. P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Clark, and T. F. Mager: ASTM STP 513, p. 141, 1972.

  18. R. O. Ritchie:Met. Sci, 1977, vol. 11, pp. 368–81.

    Article  CAS  Google Scholar 

  19. J. R. Rice: STP-415, p. 247, ASTM, Philadelphia, 1966.

    Google Scholar 

  20. V. P. Swaminathan: Ph.D. Thesis, University of Waterloo, May 1977.

  21. G. R. Irwin:Proc. 7th Sagamore Army Mat. Res. Conf., p. IV-63, Syracuse Univ. Press, Syracuse, N.Y., 1960.

    Google Scholar 

  22. D. Broek:Elementary Engineering Fracture Mechanics, p. 94, Noordhoff Int. Publishing, Layden, The Netherlands, 1974.

    Google Scholar 

  23. R. W. Hertzberg and W. J. Mills: STP 600, pp. 220–34, ASTM, Philadelphia, 1976.

    Google Scholar 

  24. R. O. Ritchie and J. F. Knott:Acta. Met, 1973, vol. 21, pp. 639–48.

    Article  CAS  Google Scholar 

  25. S.M. El-Soudani and R. M. Pelloux:Met. Trans., 1973, vol. 4, pp. 519–31.

    Article  CAS  Google Scholar 

  26. A. S. Tetelman and A. J. McEvily:Fracture of Structural Materials, p. 138, John Wiley and Sons, N.Y., 1967.

    Google Scholar 

  27. H. A. Abdel-Raouf, T. H. Topper, and A. Plumtree: Proc. ICF4, vol. 2, p. 1207, University of Waterloo Press, Waterloo, 1977.

    Google Scholar 

  28. H. A. Abdel-Raouf, T. H. Topper, and A. Plumtree: Unpublished research, University of Waterloo, Waterloo, Ontario, 1977.

    Google Scholar 

  29. G. R. Halford:AGARD Conf. Proc. C.P.-243, p. D4–8, NATO, Neuilly Sur Seine, France, 1978.

    Google Scholar 

  30. R. A. Schmidt and P. C. Paris: ASTM, STP 536, p. 79, 1973.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Lecturer and Research Associate, Department of Mechanical Engineering, University of Waterloo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Raouf, H., Topper, T.H. & Plumtree, A. The influence of interparticle spacing on cyclic deformation and fatigue crack propagation in an aluminum-4 Pct copper alloy. Metall Trans A 10, 449–456 (1979). https://doi.org/10.1007/BF02697072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697072

Keywords

Navigation