Skip to main content
Log in

High strain fatigue fracture mechanisms in two phase alloys

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Cyclic response and fatigue damage have been studied on precipitation-hardened Al-4 pet Cu alloy as a function of particle type and spacing by means of scanning and transmission electron microscopy. Specimens strain cycled in tension-compression under controlledplastic-strain tests formed intense intragranular slip bands by a disordering mechanism when the microstructures contained precipitates penetrable by dislocations. These bands were the sites of crack nucleation and Stage I propagation. With the addition of impenetrable particles, slip was dispersed homogeneously; consequently, crack nucleation and Stage I propagation shifted to the grain boundaries. The cyclic response results were then applied to Tomkins’ model of fatigue life prediction. It was found that his equations were a conservative estimate of the actual results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. E. Forsyth:The Physical Basis of Fatigue, American Elsevier Pub. Co., New York, N. Y., 1969.

    Google Scholar 

  2. International Conference on Fatigue: ASME and Inst. Mech. Eng., London, 1956.

  3. C Calabrese and C Laird:Mat. Sci. Eng., Part 1, 1974, vol. 13, pp. 141–57.

    Article  CAS  Google Scholar 

  4. C Calabrese and C Laird:Mat. Sci. Eng., Part II, 1974, vol. 13, 1974, pp. 159–74.

    CAS  Google Scholar 

  5. Calabrese: Ph.D. Thesis, University of Pennsylvania, Philadelphia, Pennsylvania, 1972.

  6. C. Laird and D. J. Duquette:Corrosion Fatigue, 0. F. Devereux, A. J. McEvily, and R. W. Staehle, eds., pp. 88–117, NACE, 1972.

  7. Laird: Fatigue Crack Propagation, pp. 131–80, ASTM STP 415, ASTM, Philadelphia, Pennsylvania, 1967.

  8. H. Wells and P. Sullivan:Trans. ASM, 1964, vol. 57, pp. 841–55.

    CAS  Google Scholar 

  9. M. A. Miner:App. Mech., 1945, vol. 12, pp. 159–64.

    Article  Google Scholar 

  10. S. S. Manson:Thermal Stress and Low Cycle Fatigue, McGraw-Hill Book Co., New York, N. Y., 1966.

    Book  Google Scholar 

  11. D. T. Raske and J. Morrow:Manual on Low Cycle Fatigue, pp. 1–26, ASTM STP 465, ASTM, Philadelphia, Pennsylvania, 1969.

    Google Scholar 

  12. R. W. Landgraf:Achievement of High Fatigue Resistance in Metals and Alloys, pp. 3–36, ASTM STP 467, ASTM, Philadelphia, Pennsylvania, 1970.

    Book  Google Scholar 

  13. J. Grosskreutz:Fatigue and Fracture of Aircraft Structures and Materials, N.T.I.S., Report No. AD 719 756,47,1969.

  14. J. T. Berling and J. Conway:Met. Trans., 1970, vol. 1, pp. 805–09.

    Article  CAS  Google Scholar 

  15. J. Morrow:Internal Friction, Damping and Cyclic Plasticity, pp. 45–87, ASTM STP 375, ASTM, Philadelphia, Pennsylvania, 1965.

    Book  Google Scholar 

  16. F. Erdogan:Crack Propagation Theories, NASA-CR-901, Nat. Aero, and Space Adm., Washington, D.C., 1967.

    Google Scholar 

  17. B. A. Bilby and K. H. Swinden:Proc. Roy. Soc., 1965, vol. 285, pp. 22–3.

    Google Scholar 

  18. R. W. Lardner:Phil Mag, 1968, vol. 17, no. 145, pp. 71–82.

    Article  CAS  Google Scholar 

  19. H. W. Liu and I. Nobu:Fracture, pp. 812–18, Chapman and Hall Ltd., London, 1969.

    Google Scholar 

  20. B. Tomkins:Phil. Mag., 1968, vol. 18, pp. 1041–66. or]21.|B. Tomkins, G. Summer, and J. Wareing: Fracture, 1969, pp. 712–14.

    Article  CAS  Google Scholar 

  21. C. Laird and A. R. Krause:Inelastic Behavior of Solids, pp. 691–715, McGrawHill Book Co., New York, N. Y., 1970.

    Google Scholar 

  22. J. Hickerson and R. W. Hertzberg:Met. Trans., 1972, vol. 3, pp. 179–189.

    Article  CAS  Google Scholar 

  23. L. P. Karjalaimen:Met. Sci. J., 1972, vol. 6, pp. 195–99.

    Article  Google Scholar 

  24. E. Feltner and M. R. Mitchell:Manual on Low Cycle Fatigue Testing, pp. 27–66, ASTM STP 465, ASTM, Philadelphia, Pennsylvania, 1969.

    Google Scholar 

  25. J. M. Silcock, T. J. Heal, and H. Hardy:J. Inst. Met., 1953-54, vol. 82, pp. 239–51.

    Google Scholar 

  26. A. Kelly and R. B. Nicholson:Progress in Materials Science, vol. 10, MacMillan Co., New York, N. Y., 1963.

    Google Scholar 

  27. H. Y. Hunsicker:Aluminum, 3rd ed., vol. 1, pp. 109–62, ASM, Metals Park, Ohio, 1968.

    Google Scholar 

  28. M. E. Fine:Strengthening of Metals, pp. 141–62, Reinhold Publishing Corp., New York, N. Y., 1964.

    Google Scholar 

  29. J. Grosskreutz:Metal Fatigue Damage, ASTM STP 495, pp. 5–60, ASTM, Philadelphia, Pennsylvania, 1971.

    Google Scholar 

  30. W. J. Plumbridge and D. A. Ryder:Met. Mater. Metallurg. Rev., 1969, vol. 3, no. 8, pp. 119–42.

    Google Scholar 

  31. J. Grosskreutz:J. Phys. Status. Solidi, 1971, vol. 47, pp. 359–96.

    Article  CAS  Google Scholar 

  32. J. M. Finney:Mater. Sci. Eng., 1970, vol. 6, pp. 55–65.

    Article  CAS  Google Scholar 

  33. J. Grosskreutz: Relation Between Heat Treatment, Microstructure, and Fatigue in Structural Materials, Met. Soc. AIME, Atlanta, Ga., May 17–20, 1971.

  34. Laird and E. Feltner:Trans. TMS-AIME, 1967, vol. 239, pp. 1074–83.

    CAS  Google Scholar 

  35. E. Feltner and P. Beardmore:Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP 467, pp. 3–36, ASTM, Philadelphia, Pennsylvania, 1970.

    Google Scholar 

  36. J. Clark and A. J. McEvily, Jr.:ActaMet, 1964, vol. 12, pp. 1359–72.

    CAS  Google Scholar 

  37. G. A. Stubbington and P. J. E. Forsyth:ActaMet, 1966, vol. 14, pp. 5–12.

    CAS  Google Scholar 

  38. A. Abel and R. K. Ham:ActaMet, 1966, vol. 14, pp. 1495–1503.

    CAS  Google Scholar 

  39. Laird and G. Thomas:Inter. J. Frac. Mech., 1967, vol. 3, no. 2, pp. 81–97.

    Article  CAS  Google Scholar 

  40. R. W. Landgraf: IMD-AIME, 5th Annual Spring Meeting, May 29-June 1, 1973, University of Pennsylvania, Philadelphia, Pennsylvania.

  41. P. G. Forrest:Fatigue of Metals, Pergamon Press, London, 1962.

    Google Scholar 

  42. B. K. Park, V. Greenhut, G. Luetjering, and S. Weissman:Technical Report AFML-TR-70-195, 1970, Air Force Command, Wright-Patterson Air Force Base, Ohio.

  43. P. Lukás, M. Klesnil, and R. Fiedler:Phil. Mag., 1969, vol. 20, pp. 799–805.

    Article  Google Scholar 

  44. M. A. Wilkins and G. Smith:ActaMet, 1970, vol. 18, pp. 1035–43.

    CAS  Google Scholar 

  45. J. C. Grosskreutz and G. G. Shaw:Fatigue Crack Propagation, ASTM STP 415, Philadelphia, Pennsylvania, p. 226,1967.

  46. C. H. Wells and P. Sullivan:Trans. ASM, 1969, vol. 62, pp. 263–70.

    CAS  Google Scholar 

  47. C. E. Feltner andC. Laird: Reported by E. Feltner and P. Beardmore,Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP 467, pp. 77–112, Am. Soc. Test. Mater., Philadelphia, Pennsylvania, 1970.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabrese, C., Laird, C. High strain fatigue fracture mechanisms in two phase alloys. Metall Trans 5, 1785–1793 (1974). https://doi.org/10.1007/BF02644142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644142

Keywords

Navigation