Skip to main content
Log in

A field experiment testing for correspondence between trace elements in otoliths and the environment and for evidence of adaptation to prior habitats

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Site-specific variation in the trace element composition of fish otoliths can be used to identify fish to source, but the mechanisms controlling elemental composition are poorly understood. Environmental influences on the deposition of barium (Ba), copper (Cu), manganese (Mn), and strontium (Sr) in the otoliths of mudsuckers (Gillichthys mirabilis) were tested using a reciprocal field transplant experiment, in which fish from 3 estuaries were transplanted to each of the 3 estuaries. Fish originating from the 3 estuaries showed no differences in otolith chemistry that might reflect acclimation to past conditions in their home estuary or genetic differences among populations, which simplifies the interpretation of otolith chemistry. Cu and Mn concentrations in otoliths differed according to the site of transplant. Cu in otoliths showed the same pattern of difference among estuaries as did Cu in sediments, but there was no correspondence between Cu in otoliths and dissolved Cu. Ranked differences among estuaries in otolith Mn matched the ranking of estuary-specific differences in dissolved Mn, and there was no correspondence between the concentration of Mn in otoliths and sediments. Fish transplanted to different estuaries showed no differences in otolith concentrations of Ba or Sr, and the concentrations of Ba and Sr in the water column showed a similar lack of difference among estuaries. This study provides field evidence supporting the conclusion that the elemental composition of otoliths reflects environmental conditions to which fish have been recently exposed, but whether that correlation is with trace elements in the sediment or water column can vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • American Public Health Association (APHA). 1995. Standard Methods 3120 B: Inductively Coupled Plasma (ICP) Method. Standard Methods for the Examination of Water and Wastewater, 19th edition. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Barry, J. P., M. M. Yoklavich, G. M. Cailliet, D. A. Ambrose, andB. S. Antrim. 1996. Trophic ecology of the dominant fishes in Elkhorn Slough, California, 1974–1980.Estuaries 19:115–138.

    Article  Google Scholar 

  • Bath, G. E., S. R. Thorrold, C. M. Jones, S. E. Campana, J. W. McLaren, andJ. W. H. Lam. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish.Geochimica et Cosmochimica Acta 64:1705–1714.

    Article  CAS  Google Scholar 

  • Beck, M. W., K. L. Heck, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan, andM. R. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.Bioscience 51:633–641.

    Article  Google Scholar 

  • Brazner, J. C., S. E. Campana, D. K. Tanner, andS. T. Schram. 2004. Reconstructing habitat use and wetland nursery origin of yellow perch from Lake Superior using otolith elemental analysis.Journal of Great Lakes Research 30:492–507.

    Article  CAS  Google Scholar 

  • Brooks, A. J. 1999. Factors influencing the structure of an estuarine fish community: The role of interspecific competition. Ph.D. Dissertation, University of California Santa Barbara, Santa Barbara, California.

    Google Scholar 

  • Buckel, J. A., B. L. Sharack, andV. S. Zdanowicz. 2004. Effect of diet on otolith composition inPomatomus saltatrix, an estuarine piscivore.Journal of Fish Biology 64:1469–1484.

    Article  Google Scholar 

  • Bury, N. R., P. A. Walker, andC. N. Glover. 2003. Nutritive metal uptake in teleost fish.Journal of Experimental Biology 206:11–23.

    Article  CAS  Google Scholar 

  • Campana, S. E. 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms, and applications.Marine Ecology Progress Series 188:263–297.

    Article  CAS  Google Scholar 

  • Campana, S. E., G. A. Chouinard, J. M. Hanson, A. Frechet, andJ. Brattey. 2000. Otolith elemental fingerprints as biological tracers of fish stocks.Fisheries Research 46:343–357.

    Article  Google Scholar 

  • Clements, W. H., J. T. Oris, andT. E. Wissing. 1994. Accumulation and food chain transfer of fluoranthene and benzo(a)pyrene inChironomus riparius andLepomis macrochirus.Archives of Environmental Contamination and Toxicology 26: 261–266.

    Article  CAS  Google Scholar 

  • Cohen, T., S. S. Q. Hee, andR. F. Ambrose. 2001. Trace metals in fish and invertebrates of three California coastal wetlands.Marine Pollution Bulletin 42:224–232.

    Article  CAS  Google Scholar 

  • Dove, S. G., B. M. Gillanders, andM. J. Kingsford. 1996. An investigation of chronological differences in the deposition of trace metals in the otoliths of two temperature reef fishes.Journal of Experimental Marine Biology and Ecology 205:15–33.

    Article  CAS  Google Scholar 

  • Elsdon, T. S. andB. M. Gillanders. 2002. Interactive effects of temperature and salimity on otolith chemistry: Challenges for determining environmental histories of fish.Canadian Journal of Fisheries and Aquatic Sciences 59:1796–1808.

    Article  CAS  Google Scholar 

  • Farrell, J. andS. E. Campana. 1996. Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia,Oreochromis niloticus.Comparative Biochemistry and Physiology A-Comparative Physiology 115:103–109.

    Article  Google Scholar 

  • Forrester, G. E., B. I. Fredericks, D. Gerdeman, B. Evans, M. A. Steele, K. Zayed, L. E. Schweitzer, I. H. Suffet, R. R. Vance, andR. F. Ambrose. 2003. Growth of estuarine fish is associated with the combined concentration of sediment contaminants and shows no adaptation or acclimation to past conditions.Marine Environmental Research 56:423–442.

    Article  CAS  Google Scholar 

  • Forrester, G. E. andS. E. Swearer. 2002. Trace elements in otoliths indicate the use of open-coast versus bay nursery habitats by juvenile California halibut.Marine Ecology Progress Series 242:201–213.

    Article  Google Scholar 

  • Fowler, A. J., S. E. Campana, C. M. Jones, andS. R. Thorrold. 1995a. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution-based ICPMS.Canadian Journal of Fisheries and Aquatic Sciences 52:1421–1430.

    Article  Google Scholar 

  • Fowler, A. J., S. E. Campana, C. M. Jones, andS. R. Thorrold. 1995b. Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS.Canadian Journal of Fisheries and Aquatic Sciences 52:1431–1441.

    Article  Google Scholar 

  • Gale, S. A., S. V. Smith, R. P. Lim, R. A. Jeffree, andP. Petocz. 2003. Insights into the mechanisms of copper tolerance of a population of black-banded rainbowfish (Melanotaenia nigrans) (Richardson) exposed to mine leachate, using Cu-64/67.Aquatic Toxicology 62:135–153.

    Article  CAS  Google Scholar 

  • Gallahar, N. K. andM. J. Kingsford. 1996. Factors influencing Sr/Ca ratios in otoliths ofGirella elevata: An experimental investigation.Journal of Fish Biology 48:174–186.

    CAS  Google Scholar 

  • Geffen, A. J., N. J. G. Pearce, andW. T. Perkins. 1998. Metal concentrations in fish otoliths in relation to body composition after laboratory exposure to mercury and lead.Marine Ecology Progress Series 165:235–245.

    Article  CAS  Google Scholar 

  • Gillanders, B. M., K. W. Able, J. A. Brown, D. B. Eggleston, andP. F. Sheridan. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries.Marine Ecology Progress Series 247: 281–295.

    Article  Google Scholar 

  • Gillanders, B. M. andM. J. Kingsford. 1996. Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish.Marine Ecology Progress Series 141:13–20.

    Article  Google Scholar 

  • Hanson, P. J., C. C. Koenig, andV. S. Zdanowicz. 2004. Elemental composition of otoliths used to trace estuarine habitats of juvenile gagMycteroperca microlepis along the west coast of Florida.Marine Ecology Progress Series 267:253–265.

    Article  CAS  Google Scholar 

  • Hanson, P. J. andV. S. Zdanowicz. 1999. Elemental composition of otoliths from Atlantic croaker along an estuarine pollution gradient.Journal of Fish Biology 54:656–668.

    Article  Google Scholar 

  • Hoff, G. R. andL. A. Fuiman. 1995. Environmentally induced variation in elemental composition of red drum (Scianops ocellatus) otoliths.Bulletin of Marine Science 56:578–591.

    Google Scholar 

  • Huang, D. andG. Bernardi. 2001. Disjunct Sea of Cortez-Pacific OceanGillichthys mirabilis populations and the evolutionary origin of their Sea of Cortez endemic relative,Gillichthys seta.Marine Biology 138:421–428.

    Article  CAS  Google Scholar 

  • Klerks, P. L. andJ. S. Weis. 1987. Genetic adaptation to heavy metals in aquatic organisms: A review.Environmental Pollution 45:173–206.

    Article  CAS  Google Scholar 

  • Limburg, K. E. 1995. Otolith strontium traces environmental history of subyearling American shadAlosa sapidissima.Marine Ecology Progress Series 119:25–35.

    Article  Google Scholar 

  • Milton, D. A. andS. R. Chenery. 2001a. Sources and uptake of trace metals in otoliths of juvenile barramundiLates calcarifer.Journal of Experimental Marine Biology and Ecology 264:47–65.

    Article  CAS  Google Scholar 

  • Milton, D. A. andS. R. Chenery. 2001b. Can otolith chemistry detect the population structure of the shad hilsaTenualosa ilisha? Comparison with the results of genetic and morphological studies.Marine Ecology Progress Series 222:239–251.

    Article  Google Scholar 

  • Mugiya, Y., T. Hakamori, andK. Hatsutori. 1991. Trace metal incorporation into otoliths and scales in the goldfish,Carassius auratus.Comparative Biochemistry and Physiology A—Comparative Physiology 99:327–331.

    Article  Google Scholar 

  • Patterson, H. M., R. S. McBride, andN. Julien. 2004. Population structure of red drum (Sciaenops ocellatus) as determined by otolith chemistry.Marine Biology 144:855–862.

    Article  Google Scholar 

  • Russo, R. E., X. L. Mao, H. C. Liu, J. Gonzalez, and S. S. Mao. Laser ablation in analytical chemistry—A review.Talanta 57: 425–451.

  • Sanchez-Jerez, P., B. M. Gillanders, andM. J. Kingsford. 2002. Spatial variability of trace elements in fish otoliths: Comparison with dietary items and habitat constituents in seagrass meadows.Journal of Fish Biology 61:801–821.

    Article  CAS  Google Scholar 

  • Sokal, R. R. andF. J. Rohlf. 1995. Biometry: The Principles and Practice of statistics in Biological Research, 3rd edition. W. H. Freeman and Company, New York.

    Google Scholar 

  • Thomas, L. M., S. A. Holt, andS. R. Arnold. 1995. Chemical marking techniques of larval and juvenile red drum (Scienops ocellatus) otoliths using different fluorescent markers, p. 703–717.In D. H. Secor, J. M. Dean, and S. E. Campana (eds.), Recent Developments in Fish Otolith Research. University of South Carolina Press, Aiken, South Carolina.

    Google Scholar 

  • Thorrold, S. R., C. M. Jones, S. E. Campana, J. W. McLaren, andJ. W. H. Lam. 1998. Trace element signatures in otoliths record natal river of juvenile American shad (Alosa sapidissima).Limnology and Oceanography 43:1826–1835.

    Google Scholar 

  • Wall, S. B., J. J. Isely, andT. W. La Point. 1996. Fish bioturbation of cadmium-contaminated sediments: Factors affecting Cd availability toDaphnia magna.Environmental Toxicology and Chemistry 15:294–298.

    Article  CAS  Google Scholar 

  • Wang, W. X. andN. S. Fisher. 1999. Delineating metal accumulation pathways for marine invertebrates.Science of the Total Environment 238:459–472.

    Article  Google Scholar 

  • Winer, B. J., D. R. Brown, andK. M. Michels. 1991. Statistical Principles in Experimental Design, 3rd edition. McGraw-Hill, New York.

    Google Scholar 

  • Yoklavich, M. M., M. Stevenson, andG. M. Cailliet. 1992. Seasonal and spatial patterns of ichthyoplankton abundance in Elkhorn Slough, California.Estuarine Coastal and Shelf Science 34:109–126.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). 1996. Acid Digestion of Sediments, Sludges and Soils Method 3050B. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Publication SW-846, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrester, G.E. A field experiment testing for correspondence between trace elements in otoliths and the environment and for evidence of adaptation to prior habitats. Estuaries 28, 974–981 (2005). https://doi.org/10.1007/BF02696025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02696025

Keywords

Navigation