Skip to main content
Log in

Microphytobenthic potential productivity estimated in three tidal embayments of the San Francisco Bay: A comparative study

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

In this paper we describe a three-step procedure to infer the spatial heterogeneity in microphytobenthos primary productivity at the scale of tidal estuaries and embayments. The first step involves local measurement of the carbon assimilation rate of benthic microalgae to determine the parameters of the photosynthesis-irradiance (P-E) curves (using non-linear optimization methods). In the next step, a resampling technique is used to rebuild pseudo-sampling distributions of the local productivity estimates; these provide error estimates for determining the significance level of differences between sites. The third step combines the previous results with deterministic models of tidal elevation and solar irradiance to compute mean and variance of the daily areal primary productivity over an entire intertidal mudflat area within each embayment. This scheme was applied on three different intertidal mudflat regions of the San Francisco Bay estuary during autumn 1998. Microphytobenthos productivity exhibits strong (ca. 3-fold) significant differences among the major sub-basins of San Francisco Bay. This spatial heterogeneity is attributed to two main causes: significant differences in the photosynthetic competence (P-E parameters) of the microphytobenthos in the different sub-basins, and spatial differences in the phase shifts between the tidal and solar cycles controlling the exposure of intertidal areas to sunlight. The procedure is general and can be used in other estuaries to assess the magnitude and patterns of spatial variability of microphytobenthos productivity at the level of the ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Admiraal, W. 1977. Salinity tolerance of benthic estuarine diatoms as tested with a rapid polarographic measurement of photosynthesis.Marine Biology 39:11–19.

    Article  Google Scholar 

  • Admiraal, W. 1984. The ecology of estuarine sediment-inhabiting diatoms, p. 269–322.In F. E. Round and D. J. Chapman (eds.), Progress in Physiological Research, Volume 3. Biopress Ltd., Bristol, U.K.

    Google Scholar 

  • Alpine, A. E. andJ. E. Cloern. 1988. Phytoplankton growth rates in a light-limited environment, San Francisco Bay.Marine Ecology Progress Series 44:167–173.

    Article  Google Scholar 

  • Alpine, A. E. andJ. E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in estuary.Limnology and Oceanography 37:946–955.

    Google Scholar 

  • Blanchard, G. F., J.-M. Guarini, P. Gros, andP. Richard. 1997. Seasonal effect of the relationship between the photosynthetic capacity of intertidal microphytobenthos and temperature.Journal of Phycology 33:723–728.

    Article  Google Scholar 

  • Cheng, R. T. andJ. W. Gartner. 1984. Tides, tidal and residual currents in San Francisco Bay, California: Results of measurements, 1979–1980. Investigations Report 84-4339. U.S. Geological Survey Water Resources, Menlo Park, California.

    Google Scholar 

  • Cloern, J. E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries.Continental Shelf Research 7:1367–1381.

    Article  Google Scholar 

  • Cloern, J. E. 1996. Phytoplankton bloom dynamics in coastal systems: A review with some general lessons from sustained investigation of San Francisco Bay, California.Review of Geophysics 34:127–168.

    Article  CAS  Google Scholar 

  • Cullen, J. J. 1990. On models of growth and photosynthesis in phytoplankton.Deep-Sea Research 37:667–683.

    Article  CAS  Google Scholar 

  • Darley, W. M., E. L. Dunn, K. S. Holmes, andH. G. Larew. 1970. A14C method for measuring epibenthic microalgal productivity in air.Journal of Experimental Marine Biology and Ecology 25:207–217.

    Article  Google Scholar 

  • Efron, B. andR. Tibshirani. 1993. An Introduction to the Bootstrap. Chapman and Hall, London, U.K.

    Google Scholar 

  • Frouin, R., D. W. Lingner, C. Gautier, K. S. Baker, andR. C. Smith. 1989. A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface.Journal of Geophysical Research 94:9731–9742.

    Article  Google Scholar 

  • Guarini, J. M., P. Gros, G. B. Blanchard, andC. Bacher. 1999. Short-term dynamics of intertidal microphytobenthic biomass. Mathematical modelling.Comptes Rendus de l'Académie des Sciences/Life Sciences 322:363–373.

    CAS  Google Scholar 

  • Guarini, J. M., G. F. Blanchard, P. Gros, D. Gouleau, andC. Bacher. 2000. Dynamic model of the short-term variability of microphytobenthic biomass on temperate intertidal mudflats.Marine Ecology Progress Series 195:291–303.

    Article  Google Scholar 

  • Jassby, A. D., J. E. Cloern, andT. M. Powell. 1993. Organic carbon sources and sinks in San Francisco Bay: Variability induced by river flow.Marine Ecology Progress Series 95:39–54.

    Article  CAS  Google Scholar 

  • Jassby, A. D. andT. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton.Limnology and Oceanography 21:540–547.

    Article  CAS  Google Scholar 

  • Kühl, M., C. Lassen, andB. B. Jörgensen. 1994. Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes.Marine Ecology Progress Series 15:139–148.

    Article  Google Scholar 

  • Lewis, M. R. andJ. C. Smith. 1983. A small volume, short-incubation time method for measurement of photosynthesis as a function of incident irradiance.Marine Ecology Progress Series 13:99–102.

    Article  CAS  Google Scholar 

  • Nelder, V. A. andR. Mead. 1965. A simplex method for function minimization.The Computer Journal 7:308–313.

    Google Scholar 

  • NOAA. 1998. National Ocean Service Hydrographic Survey Data. U.S. Coastal Waters. CD Version 4.0. North Atlantic Treaty Organization, National Geophysical Data Center Boulder, Colorado (http://www.ngdc.noaa.gov/mgg/fliers/98mgg03.html).

    Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lali. 1984. A Manual of Chemical and Biological Methods for Sea Water Analysis. Pergamon Press, Oxford, U.K.

    Google Scholar 

  • Pinckney, J. L. andR. G. Zingmark. 1993. Modelling the annual production of intertidal benthic microalgae in estuarine ecosystems.Journal of Phycology 29:396–407.

    Article  Google Scholar 

  • Rasmussen, M. B., K. Henriksen, andA. Jensen. 1983. Possible causes of temporal fluctuations in primary production of the microphytobenthos in the Danish Wadden Sea.Marine Biology 73:109–114.

    Article  Google Scholar 

  • Rubinstein, R. Y. 1981. Simulation and the Monte-Carlo Method. John Wiley and Sons, New York.

    Google Scholar 

  • Serodio, J., J. M. Da Silva, andF. Catarino. 1998. Non destructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluoresence.Journal of Phycology 33:542–553.

    Article  Google Scholar 

  • Underwood, G. J. C. andJ. Krompkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries.Advances in Ecological Research 29:93–153.

    Article  CAS  Google Scholar 

  • Walter, R. A., R. T. Cheng, andT. J. Conomos. 1985. Time scales of circulation and mixing processes of San Francisco Bay waters.Hydrobiologia 129:13–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Guarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarini, JM., Cloern, J.E., Edmunds, J. et al. Microphytobenthic potential productivity estimated in three tidal embayments of the San Francisco Bay: A comparative study. Estuaries 25, 409–417 (2002). https://doi.org/10.1007/BF02695983

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02695983

Keywords

Navigation