Skip to main content
Log in

Effects of sandy vs muddy sediments on the vertical distribution of microphytobenthos in intertidal flats of the Fraser River Estuary, Canada

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Benthic algae or microphytobenthos (MPB) in intertidal flats play an important role in the sediment and overlying water ecosystems. We hypothesize that there are effects of sediment texture on the vertical distribution of MPB using chlorophyll a (chl a) as a proxy for MPB biomass and present results over a 2.5-year period. Four sites were sampled monthly: two sandy sites (A10 and A12) and two muddy sites (A0 and A14) on the intertidal flats of the Fraser River Estuary. At the two sandy sites, pigments were distributed down to 10 cm. High ratios of depth-integrated chl a to phaeopigments suggest that the chl a had been recently buried. In contrast, at the muddy sites, pigments were limited to the top 4 cm, with MBP in the top 1 cm contributing up to 60 % of the whole sediment core pigments. As a result, the depth-integrated chl a values were on average 2,044 mg m–2 (160–4,200) at A10 and 882 mg m−2 (183–2,569) at A12, the two sandy sites, and much higher than at the two muddy sites where averages of 84 mg m−2 (41–174) and 235 mg m−2 (77–854) were measured at A0 and A14, respectively. Despite these lower concentrations at the muddy sites than at the sandy sites, particulate organic carbon (POC) and nitrogen (PON) concentrations showed a homogenous vertical distribution at the two sandy sites. Such a homogeneous vertical distribution of chl a, POC, and PON suggests that vertical transport mechanisms were actively transporting organic material into and out of the sediment. These results suggest that MBP on sandy sediments play a very active role in providing food for herbivores and are interacting with the overlying water column in the sediment-water exchange processes during tidal cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Admiraal W (1984) The ecology of estuarine sediment-inhabiting diatoms. Prog Phycol Res 3:269–322

    Google Scholar 

  • Agatz M, Asmus RM, Deventer B (1999) Structural changes in the benthic diatom community along a eutrophication gradient on a tidal flat. Helgol Mar Res 53:92–101

    Article  Google Scholar 

  • Amos CL, Feeney TD, Sutherland TF, Luternauer JL (1997) The stability of fine-grained sediments from the Fraser River delta. Estuar Coast Shelf Sci 45:507–524

    Article  CAS  Google Scholar 

  • Arvai JL, Levings CD, Harrison PJ, Neill WE (2002) Improvement of the sediment ecosystem following diversion of an intertidal sewage outfall at the Fraser River estuary, Canada, with emphasis on Corophium salmonis (Amphipoda). Mar Poll Bull 44:511–519

    Article  CAS  Google Scholar 

  • Barranguet C, Herman PMJ, Sinke JJ (1997) Microphytobenthos biomass and community composition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat. J Sea Res 38:59–70

    Article  Google Scholar 

  • Baulch HM, Turner MA, Findlay DL, Vinebrooke RD, Donahue WF (2009) Benthic algal biomass – measurements and errors. Can J Fish Aquat Sci 66:1–13

    Article  Google Scholar 

  • Bawden CA, Heath WA, Norton AB (1973) A preliminary baseline study of Roberts and Sturgeon Banks. Westwater Research Centre Tech Rep No 1, University of British Columbia

  • BC Research Inc (1975) Environmental studies at Iona Island. Report No 2 Project No 1511/2, Great Vancouver Regional District, Burnaby, British Columbia, Canada

  • Bendell-Young L, Yin K, Thomas C, Harrison PJ, Feeney TD, Arvai JL, Levings CD, Ross L (2004) Biogeochemistry of the intertidal area of the Fraser River estuary, In: Groulx BJ, Mosher DC, Luternauer JL, Bilderback DE (eds) Fraser River Delta, British Columbia: issues of an urban estuary. Geol Survey Can Bull 567:189–212

  • Billerbeck M, Røy H, Bosselmann K, Huettel M (2006) Benthic photosynthesis in submerged Wadden Sea intertidal flats. Estuar Coast Shelf Sci 71:704–716

    Article  Google Scholar 

  • Birtwell IK, Greer GL, Nassichuk MD, Rogers IH (1983) Studies of the impact of municipal sewage discharge onto an intertidal area within the Fraser River Estuary, British Columbia. Can Tech Rep Fish Aquat Sci 1170

  • Blanchard GF, Guarini JM, Orvain F, Sauriau PG (2001) Dynamic behavior of benthic microalgal biomass in mudflats. J Exp Mar Biol Ecol 264:85–100

    Article  Google Scholar 

  • Blanchard GF, Montagna PA (1992) Photosynthetic response of natural assemblages of marine benthic microalgae to short- and long-term variations of incident irradiance in Baffin Bay, Texas. J Phycol 28:7–14

    Article  Google Scholar 

  • Brito AC, Fernandes TF, Newton A, Facca C, Tett P (2012) Does microphytobenthos resuspension influence phytoplankton in shallow systems? A comparison through a Fourier series analysis. Estuar Coast Shelf Sci 110:77–84

    Article  CAS  Google Scholar 

  • Burd BJ, Barnes PAG, Wright CA, Thomson RE (2008) A review of subtidal benthic habitats and invertebrate biota of the Strait of Georgia. Mar Environ Res 66:S3–S38

    Article  CAS  Google Scholar 

  • Burford MA, Revill AT, Smith J, Clementson L (2012) Effect of sewage nutrients on algal production, biomass and pigments in tropical tidal creeks. Mar Poll Bull 64:2671–2680

    Article  CAS  Google Scholar 

  • Cartaxana P, Mendes CR, van Leeuwe MA, Brotas V (2006) Comparative study on microphytobenthic pigments of muddy and sandy intertidal sediments of the Tagus estuary. Estuar Coast Shelf Sci 66:225–230

    Article  Google Scholar 

  • Chennu A, Färber P, Volkenborn N, Al-Najjar MAA, Janssen F, de Beer D, Polerecky L (2013) Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments. Limnol Oceanogr Methods 11:511–528

    Article  CAS  Google Scholar 

  • Colijn F, Dijkema KS (1981) Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. Mar Ecol Prog Ser 4:9–21

    Article  Google Scholar 

  • Colijn F, de Jonge VN (1984) Primary production of microphytobenthos in the EMS-Dollard estuary. Mar Ecol Prog Ser 14:185–196

    Article  Google Scholar 

  • Consalvey M, Paterson D, Underwood G (2004) The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatomol Res 18:181–202. doi:10.1080/0269249X.2004.9705870

    Article  Google Scholar 

  • Davis MW, McIntire CD (1983) Effects of physical gradients on the production of sediment-associated algae. Mar Ecol Prog Ser 13:103–114

    Article  CAS  Google Scholar 

  • d’Andrea AF, Aller RC, Lopez GR (2002) Organic matter flux and reactivity on a South Carolina sandflat: the impacts of porewater advection and macrobiological structures. Limnol Oceanogr 47:1056–1070

    Article  Google Scholar 

  • de Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of an intertidal mudflat. Mar Ecol Prog Ser 218:33–44

    Article  Google Scholar 

  • Defew EC, Tolhurst TJ, Paterson DM (2002) Site-specific features influence sediment stability of intertidal flats. Hydrol Earth Syst Sci 6:971–981

    Article  Google Scholar 

  • Delgado M, de Jonge VN, Peletier H (1991) Experiments on resuspension of natural microphytobenthos populations. Mar Biol 108:321–328

    Article  Google Scholar 

  • Desrosiers C, Leflaive J, Eulin A, Ten Hage L (2013) Bioindicators in marine waters: benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecol Indic 32:25–34

    Article  CAS  Google Scholar 

  • Du GY, Son M, Yun M, An S, Chung IK (2009) Microphytobenthic biomass and species composition in intertidal flats of the Nakdong River estuary, Korea. Estuar Coast Shelf Sci 82:663–672

    Article  Google Scholar 

  • Du GY, Son M, An S, Chung IK (2010) Temporal variation in the vertical distribution of microphytobenthos in intertidal flats of the Nakong River estuary, Korea. Estuar Coast Shelf Sci 86:62–70

    Article  Google Scholar 

  • Evrard V, Cook PLM, Veuger B, Huettel M, Middelburg JJ (2008) Tracing carbon and nitrogen incorporation and pathways in the microbial community of a photic subtidal sand. Aquat Microb Ecol 53:257–269

    Article  Google Scholar 

  • Feeney TD (1995) Physical controls on the distribution of contaminants on Sturgeon Bank, Fraser River delta, British Columbia. MSc thesis, University of British Columbia, Canada

  • Grangere K, Ubertini M, Lefebvre S, Gangnery A, Le Gendre A, Orvain F (2012) Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon. PLoS ONE 7:1–17

    Google Scholar 

  • Grinham AR, Carruthers TJB, Fisher PL, Udy JW, Dennison WC (2007) Accurately measuring the abundance of benthic microalgae in spatially variable habitats. Limnol Oceanogr Methods 5:119–125

    Article  Google Scholar 

  • Guarini JM, Sari N, Moritz C (2008) Modelling the dynamics of the microalgal biomass in semi-enclosed shallow-water ecosystems. Ecol Model 211:267–278

    Article  Google Scholar 

  • Hagerthey SE, Defew EC, Paterson DM (2002) Influence of Corophium volutator and Hydrobia ulvae on intertidal benthic diatom assemblages under different nutrient and temperature regimes. Mar Ecol Prog Ser 245:47–59

    Article  Google Scholar 

  • Hardison AK, Canuel EA, Anderson IC, Tobias CR, Veuger B, Waters MN (2013) Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments. Biogeosciences 10:5571–5588

    Article  Google Scholar 

  • Harrison PJ, Yin K, Ross L, Arvai J, Gordon K, Bendell Young L, Thomas C, Elner R, Sewell M, Shepherd P (1999) The delta foreshore ecosystem: past and present status of geochemistry, benthic community production and shorebird utilization after sewage diversion. In: Gray C, Tuominen T (eds) Health of the Fraser River Aquatic Ecosystem. Environment Canada, Vancouver, BC, pp 189–210

    Google Scholar 

  • Huettel M, Cook P, Janssen F, Lavik G, Middelburg JJ (2007) Transport and degradation of a dinoflagellate bloom in permeable sublittoral sediment. Mar Ecol Prog Ser 340:139–153

    Article  CAS  Google Scholar 

  • Huettel M, Rusch A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45:534–549

    Article  CAS  Google Scholar 

  • JayaPrada C (2013) Impact of pollution on epilithic benthic microalgal community of Visakhapatnam harbour, east coast of India. Int J Environ Anim Conserv 2:35–49

    Google Scholar 

  • Jesus B, Brotos V, Ribeiro L, Mendes CR, Cartaxana P, Paterson DM (2009) Adaptations of microphytobenthos assemblages to sediment type and tidal position. Cont Shelf Res 29:1624–1634

    Article  Google Scholar 

  • Krom MD (1991) Importance of benthic productivity in controlling the flux of dissolved inorganic nitrogen through the sediment-water interface in a hypertrophic marine ecosystem. Mar Ecol Prog Ser 78:163–172

    Article  Google Scholar 

  • Larson F, Sundbӓck K (2004) Role of microphytobenthos in recovery of functions in a shallow-water sediment system after hypoxic events. Mar Ecol Prog Ser 357:1–16

    Article  Google Scholar 

  • LeBlond PH (1983) The Strait of Georgia: functional anatomy of a coastal sea. Can J Fish Aquat Sci 40:1033–1063

    Article  Google Scholar 

  • Le Hir P, Monbet Y, Orvain F (2007) Sediment erodability in sediment transport modelling: can we account for biota effects? Cont Shelf Res 27:1116–1142

    Article  Google Scholar 

  • Levings CD, Foreman RE, Tunnicliffe VJ (1983) Review of the benthos of the Strait of Georgia and contiguous fjords. Can J Fish Aquat Sci 40:1120–1141

    Article  Google Scholar 

  • Light BR, Beardall J (1998) Distribution and spatial variation of benthic microalgal biomass in a temperate, shallow-water marine system. Aquat Bot 61:39–54

    Article  Google Scholar 

  • Luternauer JL, Murray JW (1973) Sedimentation on the western delta-front of the Fraser River, British Columbia. Can J Earth Sci 10:1642–1663

    Article  Google Scholar 

  • MacIntyre HL, Cullen JJ (1996) Primary production by suspended and benthic microalgae in a turbid estuary: time-scales of variability in San Antonio Bay, Texas. Mar Ecol Prog Ser 145:245–268

    Article  Google Scholar 

  • MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated shallow-water marine habitats: I. Distribution, abundance and primary production. Estuaries 19:186–201

    Article  Google Scholar 

  • Masson D, Perry RI (2013) The Strait of Georgia ecosystem research initiative; an overview. Prog Oceanogr 115:1–5

    Article  Google Scholar 

  • Mitbavkar S, Anil A (2004) Vertical migratory rhythms of benthic diatoms in a tropical intertidal sand flat: influence of irradiance and tides. Mar Biol 145:9–20

    Article  Google Scholar 

  • Montani S, Magni P, Abe N (2003) Seasonal and interannual patterns of intertidal microphytobenthos in combination with laboratory and areal production estimates. Mar Ecol Prog Ser 249:79–91

    Article  Google Scholar 

  • Moore DC, Rodger GK (1991) Recovery of a sewage sludge dumping ground. 2. Macrobenthic community. Mar Ecol Prog Ser 75:301–308

    Article  Google Scholar 

  • Otte G, Levings CD (1975) Distribution of macroinvertebrates communities on a mudflat influenced by sewage. Fraser River Estuary, British Columbia. Fish Mar Ser Tech Rep 476

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  • Peletier H (1996) Long-term changes in intertidal estuarine diatom assemblages related to reduced input of organic waste. Mar Ecol Prog Ser 137:265–271

    Article  Google Scholar 

  • Pinckney JL, Zingmark RG (1991) Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Mar Ecol Prog Ser 76:81–89

    Article  Google Scholar 

  • Pinckney JL, Zingmark RG (1993a) Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16:887–897

    Article  CAS  Google Scholar 

  • Pinckney JL, Zingmark RG (1993b) Modeling the annual production of intertidal benthic microalgae in estuarine ecosystems. J Phycol 29:396–407

    Article  Google Scholar 

  • Plante R, Plante S, Cuny MR, Reys JP (1986) Photosynthetic pigments of sandy sediments on the north Mediterranean coast: their spatial distribution and its effect on sampling strategies. Mar Ecol Prog Ser 34:133–141

    Article  CAS  Google Scholar 

  • Rizzo WM (1990) Nutrient exchange between the water column and a subtidal benthic microalgal community. Estuaries 13:219–226

    Article  CAS  Google Scholar 

  • Ross L (1998) Intertidal benthic primary productivity following sewage effluent diversion on Sturgeon Bank, Fraser River delta. M.Sc. Thesis, University of British Columbia, Canada

  • Schallenberg M, Burns CW (2004) Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshw Biol 49:143–159

    Article  CAS  Google Scholar 

  • Shaffer G, Sullivan MJ (1988) Water column productivity attributable to displaced benthic diatoms in well-mixed shallow estuaries. J Phycol 24:132–140

    Article  Google Scholar 

  • Sharp JH (1974) Improved analysis of particulate organic carbon and nitrogen from seawater. Limnol Oceanogr 19:984–989

    Article  CAS  Google Scholar 

  • Sundbäck K, Nilsson P, Nilsson C, Jönsson B (1996) Balance between autotrophic and heterotrophic components and processes in microbenthic communities of sandy sediments: a field study. Estuar Coast Shelf Sci 43:689–706

    Article  Google Scholar 

  • Sutherland TF, Elner RW, O’Neill JD (2013) Roberts Bank: ecological crucible of the Fraser estuary. Prog Oceanogr 115:171–180

    Article  Google Scholar 

  • Thomas CA, Bendell-Young L (1998) Linking the sediment geochemistry of an intertidal region to metal bioavailability in the deposit feeder Macoma balthica. Mar Ecol Prog Ser 173:197–213

    Article  CAS  Google Scholar 

  • Thornton DCO, Dong LF, Underwood GJC, Nedwell DB (2002) Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat Microb Ecol 27:285–300

    Article  Google Scholar 

  • Ubertini M, Lefebvre S, Rakotomalala C, Orvain F (2015) Impact of sediment grain-size and biofilm age on epipelic microphytobenthos resuspension. J Exp Mar Biol Ecol 467:52–64

    Article  Google Scholar 

  • Underwood AJ, Chapman MG (1997) Subtidal assemblages on rocky reefs at a cliff-face sewage outfall (North Head, Sydney, Australia): what happened when the outfall was turned off? Mar Pollut Bull 33:293–302

    Article  Google Scholar 

  • Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:95–153

    Google Scholar 

  • Underwood GJC, Paterson D (1993) Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn Estuary. J Mar Biol Assoc UK 73:871–887

    Article  Google Scholar 

  • Wainright SC (1990) Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web. Mar Ecol Prog Ser 62:271–281

    Article  Google Scholar 

  • Whitney DE, Darley WM (1979) A method for the determination of chlorophyll a in samples containing degradation products. Limnol Oceanogr 24:183–186

    Article  CAS  Google Scholar 

  • Yamaguchi H, Montani S, Tsutsumi H, Hamada K, Ueda N, Tada K (2007) Dynamics of microphotobenthos biomass in a coastal area of western Seto Inland Sea, Japan. Estuar Coast Shelf Sci 75:423–432

    Article  Google Scholar 

  • Yin K, Harrison PJ (2000) Influences of flood and ebb tides on nutrient fluxes and chlorophyll on an intertidal flat. Mar Ecol Prog Ser 196:75–85

    Article  CAS  Google Scholar 

  • Zetsche E, Bulling MT, Witte U (2012) Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism. Cont Shelf Res 42:41–50

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Fraser River Action Plan sponsored by Environment Canada and the Department of Fisheries and Oceans through Dr. Colin Levings. We thank Dr. Colin Gray of Environment Canada for providing funding. We thank Leo Rebele, Joe Arvai, Amy Hillaby, and Mingxin Guo who provided assistance with field sampling. Comments on an earlier draft of the manuscript by Dr. Terri Sutherland were very useful. We thank the Canadian Coast Guard for providing the hovercraft time, and the officers and crew of Richmond Hovercraft Base for their assistance. Kedong Yin acknowledges the continuing support by NSFC 91328203, 31511130135, and GD2013B051000042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedong Yin.

Additional information

Responsible editor: Thomas Hein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Zetsche, EM. & Harrison, P.J. Effects of sandy vs muddy sediments on the vertical distribution of microphytobenthos in intertidal flats of the Fraser River Estuary, Canada. Environ Sci Pollut Res 23, 14196–14209 (2016). https://doi.org/10.1007/s11356-016-6571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6571-y

Keywords

Navigation